Abolition of the receptor potential response of isolated mammalian outer hair cells by hair-bundle treatment with elastase: a test of the tip-link hypothesis

1995 ◽  
Vol 89 (1-2) ◽  
pp. 187-193 ◽  
Author(s):  
S. Preyer ◽  
W. Hemmert ◽  
H.P. Zenner ◽  
A.W. Gummer
2005 ◽  
Vol 8 (8) ◽  
pp. 1028-1034 ◽  
Author(s):  
Shuping Jia ◽  
David Z Z He

2019 ◽  
Author(s):  
Francesco Gianoli ◽  
Thomas Risler ◽  
Andrei S. Kozlov

ABSTRACTHearing relies on the conversion of mechanical stimuli into electrical signals. In vertebrates, this process of mechano-electrical transduction (MET) is performed by specialized receptors of the inner ear, the hair cells. Each hair cell is crowned by a hair bundle, a cluster of microvilli that pivot in response to sound vibrations, causing the opening and closing of mechanosensitive ion channels. Mechanical forces are projected onto the channels by molecular springs called tip links. Each tip link is thought to connect to a small number of MET channels that gate cooperatively and operate as a single transduction unit. Pushing the hair bundle in the excitatory direction opens the channels, after which they rapidly reclose in a process called fast adaptation. It has been experimentally observed that the hair cell’s biophysical properties mature gradually during postnatal development: the maximal transduction current increases, sensitivity sharpens, transduction occurs at smaller hair-bundle displacements, and adaptation becomes faster. Similar observations have been reported during tip-link regeneration after acoustic damage. Moreover, when measured at intermediate developmental stages, the kinetics of fast adaptation varies in a given cell depending on the magnitude of the imposed displacement. The mechanisms underlying these seemingly disparate observations have so far remained elusive. Here, we show that these phenomena can all be explained by the progressive addition of MET channels of constant properties, which populate the hair bundle first as isolated entities, then progressively as clusters of more sensitive, cooperative MET channels. As the proposed mechanism relies on the difference in biophysical properties between isolated and clustered channels, this work highlights the importance of cooperative interactions between mechanosensitive ion channels for hearing.SIGNIFICANCEHair cells are the sensory receptors of the inner ear that convert mechanical stimuli into electrical signals transmitted to the brain. Sensitivity to mechanical stimuli and the kinetics of mechanotransduction currents change during hair-cell development. The same trend, albeit on a shorter timescale, is also observed during hair-cell recovery from acoustic trauma. Furthermore, the current kinetics in a given hair cell depends on the stimulus magnitude, and the degree of that dependence varies with development. These phenomena have so far remained unexplained. Here, we show that they can all be reproduced using a single unifying mechanism: the progressive formation of channel pairs, in which individual channels interact through the lipid bilayer and gate cooperatively.


2007 ◽  
Vol 98 (6) ◽  
pp. 3360-3369 ◽  
Author(s):  
Eric A. Stauffer ◽  
Jeffrey R. Holt

Auditory function in the mammalian inner ear is optimized by collaboration of two classes of sensory cells known as inner and outer hair cells. Outer hair cells amplify and tune sound stimuli that are transduced and transmitted by inner hair cells. Although they subserve distinct functions, they share a number of common properties. Here we compare the properties of mechanotransduction and adaptation recorded from inner and outer hair cells of the postnatal mouse cochlea. Rapid outer hair bundle deflections of about 0.5 micron evoked average maximal transduction currents of about 325 pA, whereas inner hair bundle deflections of about 0.9 micron were required to evoke average maximal currents of about 310 pA. The similar amplitude was surprising given the difference in the number of stereocilia, 81 for outer hair cells and 48 for inner hair cells, but may be reconciled by the difference in single-channel conductance. Step deflections of inner and outer hair bundles evoked adaptation that had two components: a fast component that consisted of about 60% of the response occurred over the first few milliseconds and a slow component that consisted of about 40% of the response followed over the subsequent 20–50 ms. The rate of the slow component in both inner and outer hair cells was similar to the rate of slow adaptation in vestibular hair cells. The rate of the fast component was similar to that of auditory hair cells in other organisms and several properties were consistent with a model that proposes calcium-dependent release of tension allows transduction channel closure.


1992 ◽  
Vol 336 (1278) ◽  
pp. 317-324 ◽  

Receptor potentials recorded from outer hair cells (ohc ) and inner hair cells (ihc) in the basal highfrequency turn were com pared. The dc component of the ihc receptor potential is maximized to ensure that ihcs can signal a voltage response to high-frequency tones. The ohc dc component is minimized so that ohcs transduce in the most sensitive region of their operating range. The phase and magnitude of ohc receptor potentials were recorded as an indicator of the magnitude and phase of the energy which is fed back to the basilar membrane to provide the basis for the sharp tuning and fine sensitivity of the cochlea to tones. IHC receptor potentials were recorded to assess the net effect of the feedback on the mechanics of the cochlea. It was concluded that ohcs generate feedback which enhances the ihc responses only at the best frequency. At frequencies below cf, ihc dc responses are elicited only when the ohc ac responses begin to saturate.


2014 ◽  
Vol 144 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Maryline Beurg ◽  
Kyunghee X. Kim ◽  
Robert Fettiplace

Transmembrane channel–like (TMC) proteins TMC1 and TMC2 are crucial to the function of the mechanotransducer (MT) channel of inner ear hair cells, but their precise function has been controversial. To provide more insight, we characterized single MT channels in cochlear hair cells from wild-type mice and mice with mutations in Tmc1, Tmc2, or both. Channels were recorded in whole-cell mode after tip link destruction with BAPTA or after attenuating the MT current with GsMTx-4, a peptide toxin we found to block the channels with high affinity. In both cases, the MT channels in outer hair cells (OHCs) of wild-type mice displayed a tonotopic gradient in conductance, with channels from the cochlear base having a conductance (110 pS) nearly twice that of those at the apex (62 pS). This gradient was absent, with channels at both cochlear locations having similar small conductances, with two different Tmc1 mutations. The conductance of MT channels in inner hair cells was invariant with cochlear location but, as in OHCs, was reduced in either Tmc1 mutant. The gradient of OHC conductance also disappeared in Tmc1/Tmc2 double mutants, in which a mechanically sensitive current could be activated by anomalous negative displacements of the hair bundle. This “reversed stimulus–polarity” current was seen with two different Tmc1/Tmc2 double mutants, and with Tmc1/Tmc2/Tmc3 triple mutants, and had a pharmacological sensitivity comparable to that of native MT currents for most antagonists, except dihydrostreptomycin, for which the affinity was less, and for curare, which exhibited incomplete block. The existence in the Tmc1/Tmc2 double mutants of MT channels with most properties resembling those of wild-type channels indicates that proteins other than TMCs must be part of the channel pore. We suggest that an external vestibule of the MT channel may partly account for the channel’s large unitary conductance, high Ca2+ permeability, and pharmacological profile, and that this vestibule is disrupted in Tmc mutants.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mélanie Tobin ◽  
Atitheb Chaiyasitdhi ◽  
Vincent Michel ◽  
Nicolas Michalski ◽  
Pascal Martin

Sound analysis by the cochlea relies on frequency tuning of mechanosensory hair cells along a tonotopic axis. To clarify the underlying biophysical mechanism, we have investigated the micromechanical properties of the hair cell’s mechanoreceptive hair bundle within the apical half of the rat cochlea. We studied both inner and outer hair cells, which send nervous signals to the brain and amplify cochlear vibrations, respectively. We find that tonotopy is associated with gradients of stiffness and resting mechanical tension, with steeper gradients for outer hair cells, emphasizing the division of labor between the two hair-cell types. We demonstrate that tension in the tip links that convey force to the mechano-electrical transduction channels increases at reduced Ca2+. Finally, we reveal gradients in stiffness and tension at the level of a single tip link. We conclude that mechanical gradients of the tip-link complex may help specify the characteristic frequency of the hair cell.


Sign in / Sign up

Export Citation Format

Share Document