Single crystal studies of tetra-n-butylammoniumnickel (o-benzene-diselenolate)2 and related transition metal complexes: possible synthetic metal precursors

1988 ◽  
Vol 27 (3-4) ◽  
pp. 469-474
Author(s):  
M. Thomas Jones ◽  
James H. Roble ◽  
Megh Singh ◽  
Toshio Maruo ◽  
Elmer Schlemper
2011 ◽  
Vol 76 (1) ◽  
pp. 75-83 ◽  
Author(s):  
A.S. Ramasubramanian ◽  
Ramachandra Bhat ◽  
Ramakrishna Dileep ◽  
Sandya Rani

Transition metal complexes of 5-bromosalicylidene-4-amino-3- mercapto-1,2,4-triazine-5-one with metal precursors, such as Cu(II), Ni(II), Co(II) and Pd(II), were synthesized and characterized by physicochemical and spectroscopic techniques. All the complexes are of the ML type. Based on analytical, spectral data and magnetic moments, the Co(II) and Ni(II) complexes were assigned octahedral geometries, while the Cu (II) and Pd(II) complexes square planar. A study on the catalytic oxidation of benzyl alcohol, cyclohexanol, cinnamyl alcohol, 2-propanol and 2- methyl-1-propanol was performed with N-methylmorpholine-N-oxide (NMO) and molecular oxygen as co-oxidants. All the complexes and their parent organic moiety were screened for their biological activity on several pathogenic bacteria and were found to possess appreciable bactericidal properties.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Omoruyi G. Idemudia ◽  
Alexander P. Sadimenko ◽  
Anthony J. Afolayan ◽  
Eric C. Hosten

Two Schiff base ligands Ampp-Sn1and Bmpp-Sn2, afforded by a condensation reaction between sulfanilamide and the respective acylpyrazolone carbonyl precursors, their Mn(II), Co(II), Ni(II), and Cu(II) complexes prepared by the reaction of ligands and corresponding metal salts in aqueous solutions, were synthesized and then characterized by both analytical and spectroscopic methods, in a view to developing new improved bioactive materials with novel properties. On the basis of elemental analysis, spectroscopic and TGA results, transition metal complexes, with octahedral geometry having two molecules of the bidentate keto-imine ligand each, have been proposed. The single crystal structure of Bmpp-Sn according to X-ray crystallography showed a keto-imine tautomer type of Schiff base, having three intramolecular bonds, one short N2⋯H2⋯O3 hydrogen bond of 1.90 Å and two long C13⋯H13⋯O2 and C32⋯H32⋯O3 hydrogen bonds of 2.48 Å. A moderate to low biological activities have been exhibited by synthesized compounds when compared with standard antimicrobial agents on screening the synthesized compounds againstStaphylococcus aureus,Bacillus pumilus,Proteus vulgaris, andAeromonas hydrophilafor antibacterial activity and against free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) for antioxidant activity.


1993 ◽  
Vol 48 (7) ◽  
pp. 875-885 ◽  
Author(s):  
Thomas G. Meyer ◽  
Peter G. Jones ◽  
Reinhard Schmutzler

The reaction of lithiated precursors with PCl2F led to a number of monofluorophosphines, including the known di-tert-butylmonofluorophosphine, 1. Bis(phenylethinyl)monofluorophosphine (2) was accessible only via this route (the classical method of synthesizing 2 by chlorine/fluorine exchange is impossible, because the corresponding chlorophosphine is unknown). Bis(2-methoxyphenyl)fluorophosphine (5) was prepared via the organolithium/PCl2F route. The NMR results for 5 thus prepared were inconsistent with previous reports, implying that the previously reported synthesis of 5 is in error. From 5 a cis-dichloroplatinum(II) complex (6) was synthesized and subjected to a single crystal X-ray structure analysis, confirming the expected planar coordination. From bis(2,3-dimethoxynaphthyl)monofluorophosphine (7) a rhodium(I) (8) and an iron(0)tetracarbonyl complex (9) were prepared. An iron(0)tetracarbonyl complex (11) was synthesized from bis(9-anthryl)monofluorophosphine (10) which was found to be stable to redox disproportionation.


1976 ◽  
Vol 54 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Colin James Lyne Lock ◽  
Robert Anthony Speranzini ◽  
John Powell

The crystal and molecular structure of trans-dichloro(bis(isopropyl)sulfoxide-S)(1-methylcytosine-N)platinum(II) has been determined by single crystal X-ray diffraction. The crystals are triclinic with a = 16.205(5), b = 8.078(2), c = 6.776(2) Å, α = 106.53(2), β = 96.35(2), γ = 98.54(2)°. The space group is [Formula: see text] and there are two molecules per unit cell. A total of 2294 independent reflections, of which 2023 were observed, were examined on a Syntex [Formula: see text] diffractometer. The structure was refined by full matrix least squares analysis to an R2 value of 0.0427. The ligands form a rough square around the platinum atom with Pt—Cl(1), 2.304(3), Pt—Cl(2), 2.287(4), Pt—S, 2.232(2), Pt—N, 2.058(7). Distances within the ligands are normal. The plane of the cytosine ring is at 84.4° to the plane formed by the ligands around platinum.


1992 ◽  
Vol 47 (11) ◽  
pp. 1545-1550 ◽  
Author(s):  
Dieter Sellmann ◽  
Marcus Hannakam ◽  
Falk Knoch ◽  
Matthias Moll

Oxidation of [Fe(CO)2(′N2H2S2′')] (1) (′N2H2S2'2- = 1,2-ethanediamine-N,N′-bis(2-benzenethiolate)(2—)) gave insoluble [Fe(′N2S2')]2 (2) ('N2S2'2- = glyoxal-bis(2-mercaptoanil)(2—)). Dinuclear, thiolato-bridged 2 was characterized by single crystal X-ray structure analysis. It does not react with CO or H2, but yields bis or mono adducts with PR3 (R = Me, n-Bu, Cy).


Sign in / Sign up

Export Citation Format

Share Document