scholarly journals Transition metal complexes of 5-bromosalicylidene-4-amino-3-mercapto-1,2,4-triazine-5-one: Synthesis, characterization, catalytic and antibacterial studies

2011 ◽  
Vol 76 (1) ◽  
pp. 75-83 ◽  
Author(s):  
A.S. Ramasubramanian ◽  
Ramachandra Bhat ◽  
Ramakrishna Dileep ◽  
Sandya Rani

Transition metal complexes of 5-bromosalicylidene-4-amino-3- mercapto-1,2,4-triazine-5-one with metal precursors, such as Cu(II), Ni(II), Co(II) and Pd(II), were synthesized and characterized by physicochemical and spectroscopic techniques. All the complexes are of the ML type. Based on analytical, spectral data and magnetic moments, the Co(II) and Ni(II) complexes were assigned octahedral geometries, while the Cu (II) and Pd(II) complexes square planar. A study on the catalytic oxidation of benzyl alcohol, cyclohexanol, cinnamyl alcohol, 2-propanol and 2- methyl-1-propanol was performed with N-methylmorpholine-N-oxide (NMO) and molecular oxygen as co-oxidants. All the complexes and their parent organic moiety were screened for their biological activity on several pathogenic bacteria and were found to possess appreciable bactericidal properties.

2021 ◽  
Vol 11 (7) ◽  
pp. 3038
Author(s):  
Maria Letizia Di Pietro ◽  
Giuseppina La Ganga ◽  
Francesco Nastasi ◽  
Fausto Puntoriero

Transition metal complexes with dppz-type ligands (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) are extensively studied and attract a considerable amount of attention, becoming, from the very beginning and increasingly over time, a powerful tool for investigating the structure of the DNA helix. In particular, [Ru(bpy)2(dppz)]2+ and [Ru(phen)2(dppz)]2+ and their derivatives were extensively investigated as DNA light-switches. The purpose of this mini-review, which is not and could not be exhaustive, was to first introduce DNA and its importance at a biological level and research in the field of small molecules that are capable of interacting with it, in all its forms. A brief overview is given of the results obtained on the Ru-dppz complexes that bind to DNA. The mechanism of the light-switch active in this type of species is also briefly introduced along with its effects on structural modifications on both the dppz ligand and the ancillary ligands. Finally, a brief mention is made of biological applications and the developments obtained due to new spectroscopic techniques, both for understanding the mechanism of action and for cellular imaging applications.


2017 ◽  
Vol 19 (43) ◽  
pp. 29068-29076 ◽  
Author(s):  
Yu-Te Chan ◽  
Ming-Kang Tsai

The CO2 reduction capabilities of transition-metal-chelated nitrogen-substituted carbon nanotube models (TM-4N2v-CNT, TM = Fe, Ru, Os, Co, Rh, Ir, Ni, Pt or Cu) are characterized by density functional theory.


1991 ◽  
Vol 46 (12) ◽  
pp. 1601-1608 ◽  
Author(s):  
Dieter Sellmann ◽  
Stefan Fünfgelder ◽  
Falk Knoch ◽  
Matthias Moll

In order to elucidate specific properties of nickel sulfur complexes, redox and addition-elimination reactions of [Ni(′OS4')]2, [Ni(′NHS4')]2, [Ni(′S5')], [Ni('S4—C5')], and [Ni('S4—C3')] were investigated ('OS4′ 2' = 2,2'-bis(2-mercaptophenylthio)diethylether(2—), 'NHS4'2- = 2,2'-bis(2-mercaptophenylthio)diethylamine(2—), 'S5'2- = 2,2'-bis(2-mercaptophenylthio)diethylsulfide(2—), 'S4-C5'2- = 1,5-bis(2-mercaptophenylthio)pentane(2—), 'S4—C3'2- = 1,3-bis(2-mercaptophenylthio)propane(2—)).Cyclovoltammetry proves the complexes to be redox inactive between —1.4 and +0.8 V vs. NHE. Above +0.8 V the complexes are irreversibly oxidized, below —1,4 V desalkylation takes place and [Ni(′S,′)2]2- is formed. An X-ray structure analysis was carried out of (NMe4)2[Ni(′S2')2], which shows a planar anion with the Ni center in a nearly perfect square planar coordination. Distances and angles are practically identical to those in the [Ni(′S2')2-] monoanion.The complexes coordinate only phosphines as coligands, but thioether donors simultaneously decoordinate and, dependant of reaction temperature, mono- or trisphosphine complexes are formed. [Ni(′S4—C3')(PMe3)] was characterized by X-ray structure analysis and exhibits a square pyramidal coordination geometry.


2014 ◽  
Vol 79 (3) ◽  
pp. 291-302 ◽  
Author(s):  
Vukadin Leovac ◽  
Ljiljana Vojinovic-Jesic ◽  
Sonja Ivkovic ◽  
Marko Rodic ◽  
Ljiljana Jovanovic ◽  
...  

The synthesis and structural characterization of a square-planar copper(II) complex with pyridoxal S-methylisothiosemicarbazone (PLITSC) of the formula [Cu(PLITSC?H)H2O]Br?H2O (1) as the first Cu(II) complex with monoanionic form of this ligand were described. Complex 1 together with two previously synthesized complexes [Cu(PLITSC)Br2] (2) and [Cu(PLITSC)Br(MeOH)]Br (3) were characterized by elemental analysis, IR and electronic spectra and also by the methods of thermal analysis, conductometry and magnetochemistry.


1974 ◽  
Vol 96 (13) ◽  
pp. 4121-4125 ◽  
Author(s):  
L. G. Vanquickenborne ◽  
J. Vranckx ◽  
C. Goeller-Walrand

1979 ◽  
Vol 32 (5) ◽  
pp. 1143 ◽  
Author(s):  
ND Sadanani ◽  
A Walia ◽  
PN Kapoor ◽  
RN Kapoor

The 1 : 1 complexes of chelating diphosphine, [2-{di(m-tolyl)phosphino}ethyl]diphenylphosphine (pmtpf), with nickel(II), palladium(II) and platinum(II) halides and thiocyanates and 2 : 1 complexes with nickel(II) perchlorates have been prepared. Ligand (pmtpf) forms low-spin square-planar and diamagnetic [M(pmtpf)X2](where X = Cl, Br, I or NCS; M = Ni, Pd or Pt) and [Ni(pmtpf)2]- (ClO4)2 complexes. Complexes of metal carbonyls having the general formula [(pmtpf)M(CO)4] (where M = Cr, Mo or W) have also been synthesized. These complexes have been characterized on the basis of element analysis, electronic, infrared and 1H N.M.R. spectral measurements, magnetic susceptibilities and electrical conductance data. In all cases studied this ligand acts as a chelating ditertiary phosphine.


2015 ◽  
Vol 44 (8) ◽  
pp. 3505-3526 ◽  
Author(s):  
Benjamin J. Pages ◽  
Dale L. Ang ◽  
Elisé P. Wright ◽  
Janice R. Aldrich-Wright

Increasing numbers of DNA structures are being revealed using a diverse range of transition metal complexes and biophysical spectroscopic techniques. Here we present a review of metal complex-DNA interactions in which several binding modes and DNA structural forms are explored.


Sign in / Sign up

Export Citation Format

Share Document