Atomic scale surface studies of conductive organic compounds 2. Scanning tunneling microscopy and crystal structure of the charge transfer complex of 4-ethylpyridine-TCNQ2 (4-EP-TCNQ2)

1991 ◽  
Vol 40 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Sergej N. Magonov ◽  
Sabine Kempf ◽  
Heinz Rotter ◽  
Hans-Joachim Cantow
2009 ◽  
Vol 603 (10-12) ◽  
pp. 1315-1327 ◽  
Author(s):  
F. Besenbacher ◽  
J.V. Lauritsen ◽  
T.R. Linderoth ◽  
E. Lægsgaard ◽  
R.T. Vang ◽  
...  

Author(s):  
H.-J. Cantow ◽  
H. Hillebrecht ◽  
S. Magonov ◽  
H. W. Rotter ◽  
G. Thiele

From X-ray analysis, the conclusions are drawn from averaged molecular informations. Thus, limitations are caused when analyzing systems whose symmetry is reduced due to interatomic interactions. In contrast, scanning tunneling microscopy (STM) directly images atomic scale surface electron density distribution, with a resolution up to fractions of Angstrom units. The crucial point is the correlation between the electron density distribution and the localization of individual atoms, which is reasonable in many cases. Thus, the use of STM images for crystal structure determination may be permitted. We tried to apply RuCl3 - a layered material with semiconductive properties - for such STM studies. From the X-ray analysis it has been assumed that α-form of this compound crystallizes in the monoclinic space group C2/m (AICI3 type). The chlorine atoms form an almost undistorted cubic closed package while Ru occupies 2/3 of the octahedral holes in every second layer building up a plane hexagon net (graphite net). Idealizing the arrangement of the chlorines a hexagonal symmetry would be expected. X-ray structure determination of isotypic compounds e.g. IrBr3 leads only to averaged positions of the metal atoms as there exist extended stacking faults of the metal layers.


Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


Author(s):  
Mircea Fotino ◽  
D.C. Parks

In the last few years scanning tunneling microscopy (STM) has made it possible and easily accessible to visualize surfaces of conducting specimens at the atomic scale. Such performance allows the detailed characterization of surface morphology in an increasing spectrum of applications in a wide variety of fields. Because the basic imaging process in STM differs fundamentally from its equivalent in other well-established microscopies, good understanding of the imaging mechanism in STM enables one to grasp the correct information content in STM images. It thus appears appropriate to explore by STM the structure of amorphous carbon films because they are used in many applications, in particular in the investigation of delicate biological specimens that may be altered through the preparation procedures.All STM images in the present study were obtained with the commercial instrument Nanoscope II (Digital Instruments, Inc., Santa Barbara, California). Since the importance of the scanning tip for image optimization and artifact reduction cannot be sufficiently emphasized, as stressed by early analyses of STM image formation, great attention has been directed toward adopting the most satisfactory tip geometry. The tips used here consisted either of mechanically sheared Pt/Ir wire (90:10, 0.010" diameter) or of etched W wire (0.030" diameter). The latter were eventually preferred after a two-step procedure for etching in NaOH was found to produce routinely tips with one or more short whiskers that are essentially rigid, uniform and sharp (Fig. 1) . Under these circumstances, atomic-resolution images of cleaved highly-ordered pyro-lytic graphite (HOPG) were reproducibly and readily attained as a standard criterion for easily recognizable and satisfactory performance (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document