A modern fuel consumption measurement system for improving the fuel economy of internal combustion engines

JSAE Review ◽  
1995 ◽  
Vol 16 (3) ◽  
pp. 328
Author(s):  
K Koeck
Author(s):  
J. L. Wang ◽  
J. Y. Wu ◽  
C. Y. Zheng

CCHP systems based on internal combustion engines have been widely accepted as efficient distributed energy resources systems. CCHP systems can be efficient mainly because that the waste heat of engines can be recovered and used. If the waste heat is not used, CCHP systems may not be beneficial choices. PV-wind systems can generate electricity without fuel consumption, but the electric output depends on the weather, which is not reliable. A PV-wind system can be integrated into a CCHP system to form a higher efficient energy system. Actually, a hybrid energy system based on PV-wind devices and internal combustion engines has been studied by many researchers. But the waste heat of the engine is seldom considered in the previous work. Researches show that, 20∼30% energy can be converted into electricity by a small size engine while more than 70% is released. If the waste heat is not recovered, the system cannot reach a high efficiency. This work aims to analyze a hybrid CCHP system with PV-wind devices. Internal combustion engines are the prime movers whose waste heat is recovered for house heating or driving absorption chillers. PV-wind devices are added to reduce the fuel consumption and total cost. The optimal design method and optimal operation strategy are proposed basing on hourly analyses. Influences of the device cost and fuel price on the optimal dispatch strategies are discussed. Results show that all of the excess energy from the PV-wind system is not worth being stored by the battery. The hybrid CCHP system can be more economical and higher efficient in the studied case.


2020 ◽  
Vol 5 (2) ◽  
pp. 118-123
Author(s):  
Van Viet Pham

Along with the development of internal combustion engines, camshafts have also been developed to optimize engine performance. In all types of internal combustion engines, the crankshaft is connected to the camshaft via a toothed belt, chain or pinion. When the crankshaft turns, the camshaft spins and opens and closes the intake and exhaust valve respectively. However, in this non-camshaft engine technology, each intake and exhaust valve will be integrated with an electronically controlled hydraulic pump unit. This system provides a unique ability to independently control intake and exhaust valves. For any engine load, load and discharge times can be programmed independently. The decision system is based on driving conditions, used to maximize performance or minimize fuel consumption and emissions. This allows a greater degree of control over the engine which in turn provides significant performance benefits. This article presents reviews of camshaftless technology developed by VALEO. It is a system that uses solenoid valves to open and close the valve. The solenoid valve will be mounted right on top of the valve inside the engine. The author can see that the technology using this electronic control valve will help reduce the fuel consumption of the engine.


Author(s):  
T. V. Dykun ◽  
L. I. Haieva ◽  
F. V. Kozak ◽  
Ya. M. Demianchuk

The problem of the effective use of traditional energy sources and the search for alternative resources is currently urgent. Today, in Ukraine, the low-calorie gas potential, which in large quantities is formed in landfills from solid household wastes, in particular biogas, is almost not used. The number of existing domestic installations for the disposal of this gas is insignificant. Today, this valuable resource in quantities of up to 1 billion cubic meters per year is emitted into the atmosphere contaminating it, or burned in flares. Rarely biogas is used in automotive internal combustion engines. However, replacing gasoline with biogas results in reduction in engine power and an increase in fuel consumption. Knowing the component composition of biogas, one can calculate the heat of its combustion and the heat of combustion of gas-air mixtures. According to the results of analytical studies, the graphic dependences of the change in effective power, torque and the effective specific biogas flow rate on engine revolutions were constructed and a comparison of these values with those of a petrol engine was performed. Dependencies show that the use of biogas as a fuel for the ICE leads to a significant reduction of the above parameters: in particular, the effective power decreases to 20%, torque to 22%, and the specific effective fuel consumption increases by 170%. However, due to the low cost of this type of automobile fuel and the considerable resource base for its obtaining in Ukraine, one can conclude - the use of biogas from landfills should be expanded and this is promising, in terms of energy independence of both separate economic entities and the state as a whole.


Sign in / Sign up

Export Citation Format

Share Document