scholarly journals ANALYSIS OF OPERATION OF INTERNAL COMBUSTION ENGINES WORKING ONE BIOGAS FROM THE LANDFILL WASTES

Author(s):  
T. V. Dykun ◽  
L. I. Haieva ◽  
F. V. Kozak ◽  
Ya. M. Demianchuk

The problem of the effective use of traditional energy sources and the search for alternative resources is currently urgent. Today, in Ukraine, the low-calorie gas potential, which in large quantities is formed in landfills from solid household wastes, in particular biogas, is almost not used. The number of existing domestic installations for the disposal of this gas is insignificant. Today, this valuable resource in quantities of up to 1 billion cubic meters per year is emitted into the atmosphere contaminating it, or burned in flares. Rarely biogas is used in automotive internal combustion engines. However, replacing gasoline with biogas results in reduction in engine power and an increase in fuel consumption. Knowing the component composition of biogas, one can calculate the heat of its combustion and the heat of combustion of gas-air mixtures. According to the results of analytical studies, the graphic dependences of the change in effective power, torque and the effective specific biogas flow rate on engine revolutions were constructed and a comparison of these values with those of a petrol engine was performed. Dependencies show that the use of biogas as a fuel for the ICE leads to a significant reduction of the above parameters: in particular, the effective power decreases to 20%, torque to 22%, and the specific effective fuel consumption increases by 170%. However, due to the low cost of this type of automobile fuel and the considerable resource base for its obtaining in Ukraine, one can conclude - the use of biogas from landfills should be expanded and this is promising, in terms of energy independence of both separate economic entities and the state as a whole.

2019 ◽  
Vol 227 ◽  
pp. 1079-1092 ◽  
Author(s):  
Daniel Dobslaw ◽  
Karl-Heinrich Engesser ◽  
Hans Störk ◽  
Thomas Gerl

Author(s):  
J. L. Wang ◽  
J. Y. Wu ◽  
C. Y. Zheng

CCHP systems based on internal combustion engines have been widely accepted as efficient distributed energy resources systems. CCHP systems can be efficient mainly because that the waste heat of engines can be recovered and used. If the waste heat is not used, CCHP systems may not be beneficial choices. PV-wind systems can generate electricity without fuel consumption, but the electric output depends on the weather, which is not reliable. A PV-wind system can be integrated into a CCHP system to form a higher efficient energy system. Actually, a hybrid energy system based on PV-wind devices and internal combustion engines has been studied by many researchers. But the waste heat of the engine is seldom considered in the previous work. Researches show that, 20∼30% energy can be converted into electricity by a small size engine while more than 70% is released. If the waste heat is not recovered, the system cannot reach a high efficiency. This work aims to analyze a hybrid CCHP system with PV-wind devices. Internal combustion engines are the prime movers whose waste heat is recovered for house heating or driving absorption chillers. PV-wind devices are added to reduce the fuel consumption and total cost. The optimal design method and optimal operation strategy are proposed basing on hourly analyses. Influences of the device cost and fuel price on the optimal dispatch strategies are discussed. Results show that all of the excess energy from the PV-wind system is not worth being stored by the battery. The hybrid CCHP system can be more economical and higher efficient in the studied case.


Author(s):  
Jose Ignacio Huertas Cardozo ◽  
Sebastia´n Izquierdo Cifuentes

Currently, there is an increasing interest in connecting thousands of small electrical plants powered by renewable energy sources to national electrical grids. The use of biogas as fuel for internal combustion engines connected to an electric generator is emerging as one of the most attractive alternatives because of its very low cost benefit ratio and very high positive impact on the environment. However, the use of biogas to generate electricity has been limited by its high content of H2S (1800–3500 ppm) and CO2 (∼40%). CO2 presence reduces the energetic density of the fuel and therefore the power output of the system. The high content of H2S corrodes important components of the engine like the combustion chamber, bronze gears and the exhaust system. This work aims to design and manufacture a low-cost industrial filter for this application. Among the different available methodologies, CaO, NaOH and amines where selected as the most appropriate for a typical farm application of 100 kW electric generations. Since there is not reported data for the H2S absorbing capacity of these substances, it was proposed to measure it by means of a bubbler. It is an experimental set up where the gas stream passes through a fixed amount of the absorbing substance until it becomes saturated. The absorbing capacity is determined as the amount of substance being trapped divided by the mass of the absorbing substance being used. Results showed an absorbing capacity of 2.8, 41.4 and 124.8 g of H2S per Kg of NaOH, CaO and monoethanolamine respectively. A gas absorbing system of amines was designed and manufactured for H2S and CO2 biogas filtration. Three different types of amines were evaluated: Monoethanolamine, Diethanolamine, and methyldiethanolamine. Results show that all the amines require a ratio of amines to biogas flow of 0.7 to obtain a 95% of H2S filtering efficiency. This data represent only a 30% of H2S mass transfer efficiency of the filter when it is compared against the mass transfer expected under quasi equilibrium conditions. Work is under way to design a high efficiency amine column for biogas treatment.


2020 ◽  
Vol 5 (2) ◽  
pp. 118-123
Author(s):  
Van Viet Pham

Along with the development of internal combustion engines, camshafts have also been developed to optimize engine performance. In all types of internal combustion engines, the crankshaft is connected to the camshaft via a toothed belt, chain or pinion. When the crankshaft turns, the camshaft spins and opens and closes the intake and exhaust valve respectively. However, in this non-camshaft engine technology, each intake and exhaust valve will be integrated with an electronically controlled hydraulic pump unit. This system provides a unique ability to independently control intake and exhaust valves. For any engine load, load and discharge times can be programmed independently. The decision system is based on driving conditions, used to maximize performance or minimize fuel consumption and emissions. This allows a greater degree of control over the engine which in turn provides significant performance benefits. This article presents reviews of camshaftless technology developed by VALEO. It is a system that uses solenoid valves to open and close the valve. The solenoid valve will be mounted right on top of the valve inside the engine. The author can see that the technology using this electronic control valve will help reduce the fuel consumption of the engine.


2020 ◽  
Vol 5 (4(73)) ◽  
pp. 35-41
Author(s):  
A.G. Taranin

The present publication illuminate the tasks as follows: Electronic indicator proper usage at four–stroke internal combustion engines (diesel engines) indication; Indication results & diagram proper transfer to PC; indicator diagram top dead center TDC correction and engine performance data output values such as PMI–mean indicated pressure, PME–mean effective pressure, NIND–indicated power and NEFF–effective power proper calculations for each cylinder and engine total.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Armando Pérez ◽  
Rogelio Ramos ◽  
Gisela Montero ◽  
Marcos Coronado ◽  
Conrado García ◽  
...  

The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.


2020 ◽  
Vol 5 (4(73)) ◽  
pp. 42-49
Author(s):  
A.G. Taranin

The present publication illuminate the tasks as follows: Electronic indicator proper usage at four–stroke internal combustion engines (diesel engines) indication; Indication results & diagram proper transfer to PC; indicator diagram top dead center TDC correction and engine performance data output values such as PMI–mean indicated pressure, PME–mean effective pressure, NIND–indicated power and NEFF–effective power proper calculations for each cylinder and engine total.


Sign in / Sign up

Export Citation Format

Share Document