Effective action functional for a Quantum Hall system

1991 ◽  
Vol 10 (2) ◽  
pp. 171-174
Author(s):  
R. Keiper ◽  
R. Nolte ◽  
O. Ziep
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Dmitry Melnikov ◽  
Horatiu Nastase

Abstract In this paper we study the Wiedemann-Franz laws for transport in 2+1 dimensions, and the action of Sl(2, ℤ) on this transport, for theories with an AdS/CMT dual. We find that Sl(2, ℤ) restricts the RG-like flow of conductivities and that the Wiedemann-Franz law is $$ \overline{L}=\overline{\kappa}/\left( T\sigma \right)={cg}_4^2\uppi /3 $$ L ¯ = κ ¯ / Tσ = cg 4 2 π / 3 , from the weakly coupled gravity dual. In a self-dual theory this value is also the value of L = κ/(Tσ) in the weakly coupled field theory description. Using the formalism of a 0+1 dimensional effective action for both generalized SY Kq models and the AdS4 gravity dual, we calculate the transport coefficients and show how they can be matched at large q. We construct a generalization of this effective action that is invariant under Sl(2, ℤ) and can describe vortex conduction and integer quantum Hall effect.


2002 ◽  
Vol 2002 (01) ◽  
pp. 002-002 ◽  
Author(s):  
Alexander Gorsky ◽  
Ian I Kogan ◽  
Chris Korthals-Altes

2001 ◽  
Vol 15 (19n20) ◽  
pp. 2771-2781 ◽  
Author(s):  
D. SREEDHAR BABU ◽  
R. SHANKAR ◽  
M. SIVAKUMAR

We study the current algebra of FQHE systems in the hydrodynamical limit of small amplitude, long-wavelength fluctuations. We show that the algebra simplifies considerably in this limit. The Hamiltonian is expressed in a current–current form and the operators creating inter-Landau level and lowest Landau level collective excitations are identified.


Sign in / Sign up

Export Citation Format

Share Document