scholarly journals Counter-propagating Edge Modes and Topological Phases of a Kicked Quantum Hall System

2014 ◽  
Vol 112 (2) ◽  
Author(s):  
Mahmoud Lababidi ◽  
Indubala I. Satija ◽  
Erhai Zhao
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matheus I. N. Rosa ◽  
Massimo Ruzzene ◽  
Emil Prodan

AbstractTwisted bilayered systems such as bilayered graphene exhibit remarkable properties such as superconductivity at magic angles and topological insulating phases. For generic twist angles, the bilayers are truly quasiperiodic, a fact that is often overlooked and that has consequences which are largely unexplored. Herein, we uncover that twisted n-layers host intrinsic higher dimensional topological phases, and that those characterized by second Chern numbers can be found in twisted bi-layers. We employ phononic lattices with interactions modulated by a second twisted lattice and reveal Hofstadter-like spectral butterflies in terms of the twist angle, which acts as a pseudo magnetic field. The phason provided by the sliding of the layers lives on 2n-tori and can be used to access and manipulate the edge states. Our work demonstrates how multi-layered systems are virtual laboratories for studying the physics of higher dimensional quantum Hall effect, and can be employed to engineer topological pumps via simple twisting and sliding.


1991 ◽  
Vol 10 (2) ◽  
pp. 171-174
Author(s):  
R. Keiper ◽  
R. Nolte ◽  
O. Ziep

2002 ◽  
Vol 2002 (01) ◽  
pp. 002-002 ◽  
Author(s):  
Alexander Gorsky ◽  
Ian I Kogan ◽  
Chris Korthals-Altes

2001 ◽  
Vol 15 (19n20) ◽  
pp. 2771-2781 ◽  
Author(s):  
D. SREEDHAR BABU ◽  
R. SHANKAR ◽  
M. SIVAKUMAR

We study the current algebra of FQHE systems in the hydrodynamical limit of small amplitude, long-wavelength fluctuations. We show that the algebra simplifies considerably in this limit. The Hamiltonian is expressed in a current–current form and the operators creating inter-Landau level and lowest Landau level collective excitations are identified.


Sign in / Sign up

Export Citation Format

Share Document