In vivo expression of iron regulated outer-membrane proteins in Pasteurella haemolytica-A1

1991 ◽  
Vol 11 (5) ◽  
pp. 373-378 ◽  
Author(s):  
Douglas W. Morck ◽  
Brian D. Ellis ◽  
P.A.Gilbert Domingue ◽  
Merle E. Olson ◽  
J.William Costerton
Microbiology ◽  
1994 ◽  
Vol 140 (12) ◽  
pp. 3293-3300 ◽  
Author(s):  
R. L. Davies ◽  
J. McCluskey ◽  
H. A. Gibbs ◽  
J. G. Coote ◽  
J. H. Freer ◽  
...  

1991 ◽  
Vol 174 (5) ◽  
pp. 1167-1177 ◽  
Author(s):  
J Vuopio-Varkila ◽  
G K Schoolnik

Enteropathogenic Escherichia coli grow as discrete colonies on the mucous membranes of the small intestine. A similar pattern can be demonstrated in vitro; termed localized adherence (LA), it is characterized by the presence of circumscribed clusters of bacteria attached to the surfaces of cultured epithelial cells. The LA phenotype was studied using B171, an O111:NM enteropathogenic E. coli (EPEC) strain, and HEp-2 cell monolayers. LA could be detected 30-60 min after exposure of HEp-2 cells to B171. However, bacteria transferred from infected HEp-2 cells to fresh monolayers exhibited LA within 15 min, indicating that LA is an inducible phenotype. Induction of the LA phenotype was found to be associated with de novo protein synthesis and changes in the outer membrane proteins, including the production of a new 18.5-kD polypeptide. A partial NH2-terminal amino acid sequence of this polypeptide was obtained and showed it to be identical through residue 12 to the recently described bundle-forming pilus subunit of EPEC. Expression of the 18.5-kD polypeptide required the 57-megadalton enteropathogenic E. coli adherence plasmid previously shown to be required for the LA phenotype in vitro and full virulence in vivo. This observation, the correspondence of the 18.5-kD polypeptide to an EPEC-specific pilus protein, and the temporal correlation of its expression with the development of the LA phenotype suggest that it may contribute to the EPEC colonial mode of growth.


2006 ◽  
Vol 20 (1) ◽  
pp. 29-36
Author(s):  
Giuseppe Iovane ◽  
Massimiliano Galdiero ◽  
Mariateresa Vitiello ◽  
Luisa Martino

2011 ◽  
Vol 63 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Bruno D'Alessandro ◽  
Leticia M. S. Lery ◽  
Wanda M. A. Krüger ◽  
Analía Lima ◽  
Claudia Piccini ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Marcin Grabowicz ◽  
Daria Koren ◽  
Thomas J. Silhavy

ABSTRACT The promoter most strongly induced upon activation of the Cpx two-component envelope stress response is the cpxP promoter. The 3′ untranscribed region (UTR) of the cpxP transcript is shown to produce a small RNA (sRNA), CpxQ. We investigated the role of CpxQ in combating envelope stress. Remarkably, the two effectors specified by the transcript are deployed to combat distinct stresses in different cellular compartments. CpxP acts in both a regulatory negative-feedback loop and as an effector that combats periplasmic protein misfolding. We find that CpxQ combats toxicity at the inner membrane (IM) by downregulating the synthesis of the periplasmic chaperone Skp. Our data indicate that this regulation prevents Skp from inserting β-barrel outer membrane proteins (OMPs) into the IM, a lethal event that likely collapses the proton motive force. Our findings suggest that Skp can fold and directly insert OMPs into a lipid bilayer in vivo without the aid of the Bam complex. IMPORTANCE Skp is a well-characterized periplasmic chaperone that binds unfolded OMPs. Surprisingly, we find that Skp can catalyze the folding and mistargeting of OMPs into the inner membrane without the aid of the other cellular proteins that normally assemble OMPs. Several OMPs function as diffusion pores. Accordingly, their mistargeting is lethal because it depolarizes the inner membrane. We show that the most highly expressed transcript of the Cpx stress response produces an sRNA from the 3′ UTR, CpxQ, which combats this potential toxicity by downregulating Skp production. Defects in OMP assembly trigger the σ E response to upregulate factors, including Skp, that promote OMP folding. The Cpx response downregulates σ E . Our findings reveal that this heretofore puzzling hierarchy exists to protect the inner membrane.


Sign in / Sign up

Export Citation Format

Share Document