scholarly journals Localized adherence by enteropathogenic Escherichia coli is an inducible phenotype associated with the expression of new outer membrane proteins.

1991 ◽  
Vol 174 (5) ◽  
pp. 1167-1177 ◽  
Author(s):  
J Vuopio-Varkila ◽  
G K Schoolnik

Enteropathogenic Escherichia coli grow as discrete colonies on the mucous membranes of the small intestine. A similar pattern can be demonstrated in vitro; termed localized adherence (LA), it is characterized by the presence of circumscribed clusters of bacteria attached to the surfaces of cultured epithelial cells. The LA phenotype was studied using B171, an O111:NM enteropathogenic E. coli (EPEC) strain, and HEp-2 cell monolayers. LA could be detected 30-60 min after exposure of HEp-2 cells to B171. However, bacteria transferred from infected HEp-2 cells to fresh monolayers exhibited LA within 15 min, indicating that LA is an inducible phenotype. Induction of the LA phenotype was found to be associated with de novo protein synthesis and changes in the outer membrane proteins, including the production of a new 18.5-kD polypeptide. A partial NH2-terminal amino acid sequence of this polypeptide was obtained and showed it to be identical through residue 12 to the recently described bundle-forming pilus subunit of EPEC. Expression of the 18.5-kD polypeptide required the 57-megadalton enteropathogenic E. coli adherence plasmid previously shown to be required for the LA phenotype in vitro and full virulence in vivo. This observation, the correspondence of the 18.5-kD polypeptide to an EPEC-specific pilus protein, and the temporal correlation of its expression with the development of the LA phenotype suggest that it may contribute to the EPEC colonial mode of growth.

2005 ◽  
Vol 187 (6) ◽  
pp. 1913-1922 ◽  
Author(s):  
Anindya S. Ghosh ◽  
Kevin D. Young

ABSTRACT In bacteria, several physiological processes once thought to be the products of uniformly dispersed reactions are now known to be highly asymmetric, with some exhibiting interesting geometric localizations. In particular, the cell envelope of Escherichia coli displays a form of subcellular differentiation in which peptidoglycan and outer membrane proteins at the cell poles remain stable for generations while material in the lateral walls is diluted by growth and turnover. To determine if material in the side walls was organized in any way, we labeled outer membrane proteins with succinimidyl ester-linked fluorescent dyes and then grew the stained cells in the absence of dye. Labeled proteins were not evenly dispersed in the envelope but instead appeared as helical ribbons that wrapped around the outside of the cell. By staining the O8 surface antigen of E. coli 2443 with a fluorescent derivative of concanavalin A, we observed a similar helical organization for the lipopolysaccharide (LPS) component of the outer membrane. Fluorescence recovery after photobleaching indicated that some of the outer membrane proteins remained freely diffusible in the side walls and could also diffuse into polar domains. On the other hand, the LPS O antigen was virtually immobile. Thus, the outer membrane of E. coli has a defined in vivo organization in which a subfraction of proteins and LPS are embedded in stable domains at the poles and along one or more helical ribbons that span the length of this gram-negative rod.


Author(s):  
Shuaiyang Wang ◽  
Chunbo You ◽  
Fareed Qumar Memon ◽  
Geyin Zhang ◽  
Yawei Sun ◽  
...  

Abstract The two-component system BaeSR participates in antibiotics resistance of Escherichia coli. To know whether the outer membrane proteins involve in the antibiotics resistance mediated by BaeSR, deletion of acrB was constructed and the recombined plasmid p-baeR was introduced into E. coli K12 and K12△acrB. Minimum inhibitory concentrations (MICs) of antibacterial agents were determined by 2-fold broth micro-dilution method. Gene expressions related with major outer membrane proteins and multidrug efflux pump-related genes were determined by real-time quantitative reverse transcription polymerase chain reaction. The results revealed that the MICs of K12ΔacrB to the tested drugs except for gentamycin and amikacin decreased 2- to 16.75-folds compared with those of K12. When BaeR was overexpressed, the MICs of K12ΔacrB/p-baeR to ceftiofur and cefotaxime increased 2.5- and 2-fold, respectively, compared with their corresponding that of K12△acrB. At the same time, the expression levels of ompC, ompF, ompW, ompA and ompX showed significant reduction in K12ΔacrB/p-baeR as compared with K12△acrB. Moreover, the expression levels of ompR, marA, rob and tolC also significantly ‘decreased’ in K12ΔacrB/p-baeR. These findings indicated that BaeR overproduction can decrease cephalosporins susceptibility in acrB-free E. coli by decreasing the expression level of outer membrane proteins.


2001 ◽  
Vol 47 (8) ◽  
pp. 727-734 ◽  
Author(s):  
Sukumaran Sunil Kumar ◽  
Vasantha Malladi ◽  
Krishnan Sankaran ◽  
Richard Haigh ◽  
Peter Williams ◽  
...  

Enteropathogenic Escherichia coli (EPEC) causes persistent infantile diarrhoea. This nontoxigenic E. coli exhibits a complicated pathogenic mechanism in which its outer membrane proteins and type III secretory proteins damage intestinal epithelium and cause diarrhoea. In accordance with this, our previous study using HEp-2 cells demonstrated cytopathic effects caused by cell-free outer membrane preparations of EPEC. In this study, we report the extrusion of actin-positive strands from HEp-2 and Int 407 cells when treated with outer membrane preparations. An interesting observation of this work, perhaps relevant to the characteristic localized three-dimensional colony formation of EPEC, is the attachment of a wild type EPEC strain to these actin-positive strands.Key words: enteropathogenic Escherichia coli, actin, outer membrane proteins, cytoskeletal elements.


2011 ◽  
Vol 63 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Bruno D'Alessandro ◽  
Leticia M. S. Lery ◽  
Wanda M. A. Krüger ◽  
Analía Lima ◽  
Claudia Piccini ◽  
...  

Author(s):  
Kang Mo Lee ◽  
Seung-Hak Cho ◽  
Cheorl-Ho Kim ◽  
Jong Hyun Kim ◽  
Sung Soon Kim

Objectives: Lectin-like adhesins of enteric bacterial pathogens such as Escherichia coli are an attractive target for vaccine or drug development. Here, we have developed e-Membranome as a database of genome-wide putative adhesins in Escherichia coli (E. coli). Methods: The outer membrane adhesins were predicted from the annotated genes of Escherichia coli strains using the PSORTb program. Further analysis was performed using Interproscan and the String database. The candidate proteins can be investigated for homology modeling of the three-dimensional (3D) structure (I-TASSER version 5.1), epitope region (ABCpred), and the glycan array. Results: e-Membranome is implemented using the Django (version 2.2.5) framework. The Web Application Server Apache Tomcat 6.0 is integrated in the platform on Ubuntu Linux (version 16.04). MySQL database (version 5.7) is used as a database engine. The information of homology model of the 3D structure, epitope region, and affinity information from the glycan array will be stored in the e-Membranome database. As a case study, we performed a genome-wide screening of outer membrane-embedded proteins from the annotated genes of E. coli using the e-Membranome pipeline. Conclusion: This platform is expected to be a valuable resource for advancing research of outer membrane proteins for the construction of lectin-glycan interaction network of E. coli. In addition, the e-Membranome pipeline can be extended to other similar biological systems that need to address host-pathogen interactions.


2013 ◽  
Vol 57 (8) ◽  
pp. 3941-3949 ◽  
Author(s):  
Wil H. F. Goessens ◽  
Akke K. van der Bij ◽  
Ria van Boxtel ◽  
Johann D. D. Pitout ◽  
Peter van Ulsen ◽  
...  

ABSTRACTA liver transplant patient was admitted with cholangitis, for which meropenem therapy was started. Initial cultures showed a carbapenem-susceptible (CS)Escherichia colistrain, but during admission, a carbapenem-resistant (CR)E. colistrain was isolated. Analysis of the outer membrane protein profiles showed that both CS and CRE. colilacked the porins OmpF and OmpC. Furthermore, PCR and sequence analysis revealed that both CS and CRE. colipossessedblaCTX-M-15andblaOXA-1. The CRE. colistrain additionally harboredblaCMY-2and demonstrated a >15-fold increase in β-lactamase activity against nitrocefin, but no hydrolysis of meropenem was detected. However, nitrocefin hydrolysis appeared strongly inhibited by meropenem. Furthermore, the CMY-2 enzyme demonstrated lower electrophoretic mobility after its incubation eitherin vitroorin vivowith meropenem, indicative of its covalent modification with meropenem. The presence of the acyl-enzyme complex was confirmed by mass spectrometry. By transformation of the CMY-2-encoding plasmid into variousE. colistrains, it was established that both porin deficiency and high-level expression of the enzyme were needed to confer meropenem resistance. In conclusion, carbapenem resistance emerged by a combination of elevated β-lactamase production and lack of porin expression. Due to the reduced outer membrane permeability, only small amounts of meropenem can enter the periplasm, where they are trapped but not degraded by the large amount of the β-lactamase. This study, therefore, provides evidence that the mechanism of “trapping” by CMY-2 β-lactamase plays a role in carbapenem resistance.


Sign in / Sign up

Export Citation Format

Share Document