Effects of bilirubin on lipid peroxidation induced by carbon tetrachloride in rat liver microsomes

1990 ◽  
Vol 9 ◽  
pp. 19
Author(s):  
Hiroshi Okabayashi ◽  
Masanobu Tsuru
1968 ◽  
Vol 106 (1) ◽  
pp. 155-160 ◽  
Author(s):  
T F Slater

1. The effects of several phenothiazine derivatives on lipid-peroxidation systems in rat liver microsomes were studied and the results are considered in relation to the hepatotoxic action of carbon tetrachloride. 2. The lipid-peroxidation system coupled to NADPH2 oxidation and stimulated by an ADP–Fe2+ mixture is strongly inhibited in vitro by promethazine (50% inhibition at 29μm). Chlorpromazine and Stelazine also inhibit the peroxidation system but are less effective than promethazine. 3. The effects of promethazine on three other systems involving oxygen uptake (sulphite oxidation, orcinol oxidation and mitochondrial succinate oxidation) were also studied. Promethazine does not inhibit these systems to the same extent as it does the NADPH2–ADP–Fe2+ lipid-peroxidation system. 4. Promethazine also produces an inhibition of the NADPH2–ADP–Fe2+ system in liver microsomes after administration in vivo. It is concluded that the inhibition involves the interaction of the drug (or a metabolite of it) with the microsomal electron-transport chain. 5. Several other compounds known to protect the rat against liver necrosis after the administration of carbon tetrachloride were tested for inhibitory action on the NADPH2–ADP–Fe2+ system. No clear correlation was observed between effectiveness in vivo as a protective agent and inhibitory effects on the NADPH2–ADP–Fe2+ system in vitro. 6. Promethazine was found to inhibit the stimulation of lipid peroxidation produced in rat liver microsomes by low concentrations of carbon tetrachloride. This effect occurs at a concentration similar to that observed in vivo after administration of a normal clinical dose.


1994 ◽  
Vol 13 (12) ◽  
pp. 831-838 ◽  
Author(s):  
Hiroyuki Yokoyama ◽  
Toshiharu Horie ◽  
Shoji Awazu

1 Rat liver microsomal suspension containing NADPH and MgCl2 was incubated at 37°C with naproxen, a non-steroidal anti-inflammatory drug. Thiobarbituric acid reactive substances (TBA-RS), high molecular weight protein aggregates and fluorescent substances were formed in the microsomal suspension. 2 Chemiluminescence was produced from the microsomal suspension. This chemiluminescence production was well correlated to the TBA-RS formation, indicating that the chemiluminescence production was closely associated with the lipid peroxidation. 3 The addition of SKF-525A to the microsomal suspension inhibited the production of TBA-RS, chemiluminescence and 6-demethylnaproxen (6-DMN), the oxidative product of naproxen. Further, the antioxidant, α-tocopherol and singlet oxygen quenchers like histidine, dimethylfuran and 1,4-diazabicyclo[2,2,2]octane strikingly inhibited the productions of chemiluminescence and TBA-RS. 4 Neither naproxen nor 6-DMN caused lipid peroxidation in the absence of NADPH. Thus, lipid peroxidation and chemiluminescence during the oxidation of naproxen in liver microsomes was suggested to be provoked by reactive oxygen species and an origin of chemiluminescence was shown to be singlet oxygen.


Sign in / Sign up

Export Citation Format

Share Document