Spin trapping of free radicals generated by suspensions of microcarrier bead-adherent endothelial cell monolayers. B.E.

1990 ◽  
Vol 9 ◽  
pp. 37
Author(s):  
Britigan ◽  
T.L. Roeder ◽  
D.M. Shasby
Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 699-707 ◽  
Author(s):  
BE Britigan ◽  
TL Roeder ◽  
DM Shasby

Abstract Spin trapping, a sensitive and specific means of detecting free radicals, is optimally performed on cell suspensions. This makes it unsuitable for the study of adherent endothelial cell monolayers because disrupting the monolayer to induce a cell suspension could introduce confounding factors. This problem was eliminated through the use of endothelial cells that were grown to confluence on microcarrier beads. Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the nature of free radical species generated by suspensions of microcarrier bead adherent porcine pulmonary endothelial cells under various forms of oxidant stress was examined. Exposure of these endothelial cells to paraquat resulted in the spin trapping of superoxide (.O2-). Endothelial cell incubation in the presence of either bolus or continuous fluxes of hydrogen peroxide (H2O2) yielded spin trap evidence of hydroxyl radical formation, which was preventable by pretreating the cells with deferoxamine. Chromium oxalate which eliminates extracellular electron paramagnetic resonance spectrometry (EPR) signals, prevented the detection of DMPO spin adducts generated by paraquat but not H2O2-treated endothelial cells. When endothelial cells were coincubated with PMA-stimulated monocytes evidence of both .O2- and hydroxyl radical production was detected, whereas with PMA- stimulated neutrophils only .O2- production could be confirmed. Neutrophil elastase, cathepsin G, and the combination of PMA and A23187 have previously been suggested to induce endothelial cell oxy-radical generation. However, exposure of endothelial cells to each of these agents did not yield DMPO spin adducts or cyanide-insensitive endothelial cell O2 consumption. These data indicate that endothelial cell exposure: to paraquat induces extracellular .O2- formation; to H2O2 leads to intracellular hydroxyl radical production; and to elastase, cathepsin G, or A23187/PMA does not appear to cause oxy- radical generation.


1994 ◽  
Vol 304 (3) ◽  
pp. 707-713 ◽  
Author(s):  
V O'Donnell ◽  
M J Burkitt

Oxidative damage to the vascular endothelium may be an important event in the promotion of atherosclerosis. Several lines of evidence suggest that lipid hydroperoxides may be responsible for the induction of such damage. Hydroperoxides cause loss of endothelial cell integrity, increase the permeability of the endothelium to macromolecules, and compromise its ability to control vascular tone via the secretion of vasoactive molecules in response to receptor stimulation. The molecular mechanisms responsible for these effects are, however, poorly understood. In this paper, we describe an e.s.r. spin-trapping investigation into the metabolism of the model hydroperoxide compound tert-butylhydroperoxide to reactive free radicals in intact human endothelial cells. The hydroperoxide is shown to undergo a single electron reduction to form free radicals. Experiments with metabolic poisons indicate that the mitochondrial electron-transport chain is the source of electrons for this reduction. The metal-ion-chelating agent desferrioxamine was found to prevent cell killing by tert-butylhydroperoxide, but did not affect free radical formation, suggesting that free metal ions may serve to promote free-radical chain reactions involved in cell killing following the initial conversion of the hydroperoxide to free radicals by mitochondria. These processes may well be responsible for many of the reported effects of hydroperoxides on endothelial cell integrity and function.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 699-707
Author(s):  
BE Britigan ◽  
TL Roeder ◽  
DM Shasby

Spin trapping, a sensitive and specific means of detecting free radicals, is optimally performed on cell suspensions. This makes it unsuitable for the study of adherent endothelial cell monolayers because disrupting the monolayer to induce a cell suspension could introduce confounding factors. This problem was eliminated through the use of endothelial cells that were grown to confluence on microcarrier beads. Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the nature of free radical species generated by suspensions of microcarrier bead adherent porcine pulmonary endothelial cells under various forms of oxidant stress was examined. Exposure of these endothelial cells to paraquat resulted in the spin trapping of superoxide (.O2-). Endothelial cell incubation in the presence of either bolus or continuous fluxes of hydrogen peroxide (H2O2) yielded spin trap evidence of hydroxyl radical formation, which was preventable by pretreating the cells with deferoxamine. Chromium oxalate which eliminates extracellular electron paramagnetic resonance spectrometry (EPR) signals, prevented the detection of DMPO spin adducts generated by paraquat but not H2O2-treated endothelial cells. When endothelial cells were coincubated with PMA-stimulated monocytes evidence of both .O2- and hydroxyl radical production was detected, whereas with PMA- stimulated neutrophils only .O2- production could be confirmed. Neutrophil elastase, cathepsin G, and the combination of PMA and A23187 have previously been suggested to induce endothelial cell oxy-radical generation. However, exposure of endothelial cells to each of these agents did not yield DMPO spin adducts or cyanide-insensitive endothelial cell O2 consumption. These data indicate that endothelial cell exposure: to paraquat induces extracellular .O2- formation; to H2O2 leads to intracellular hydroxyl radical production; and to elastase, cathepsin G, or A23187/PMA does not appear to cause oxy- radical generation.


Author(s):  
Jiangfeng Yuan ◽  
Zhuoyao Chen ◽  
Dahong Wang ◽  
Minggui Gong ◽  
Zhijun Qiu

Sign in / Sign up

Export Citation Format

Share Document