Flow structures in initial region of two interacting parallel plane jets

1989 ◽  
Vol 2 (4) ◽  
pp. 431-449 ◽  
Author(s):  
N.W.M. Ko ◽  
K.K. Lau
2022 ◽  
Vol 166 ◽  
pp. 108747
Author(s):  
Peng Wang ◽  
Peiyao Qi ◽  
Dongdong Yuan ◽  
Xiaoxuan Zhang ◽  
Sichao Tan ◽  
...  

1986 ◽  
Vol 108 (3) ◽  
pp. 331-337 ◽  
Author(s):  
F. O. Thomas ◽  
V. W. Goldschmidt

The enhancement of widening rate and turbulence intensity in a turbulent plane jet, due to an acoustic disturbance are considered. Detailed data at a representative Strouhal number suggest a well organized symmetric structural array in the initial region of the flow. These highly organized flow structures act as efficient agents in the transport of energy to the fine-grained turbulence, leading to greater diffusivity, enhanced turbulence and an increase in widening. The data also suggest significant differences in the underlying structure of the natural and excited jet flows, hence putting in jeopardy any generalization of coherent motions especially excited to facilitate their study.


2002 ◽  
Vol 2002.39 (0) ◽  
pp. 89-90
Author(s):  
Koichi NAKAMURA ◽  
Nobuyuki FUJISAWA ◽  
Tomohiro YAMAGUCHI
Keyword(s):  

Author(s):  
Tarek Abdel-Salam ◽  
Gerald Micklow ◽  
Keith Williamson

The current study reports numerical analysis of turbulent jets. Effects of various parameters on the characteristics of two-dimensional turbulent plane parallel and offset jets are investigated. The emphasis is put on the effect of the wall angle and nozzle width on the location merging and the combining points. The flowfield under consideration are two-parallel plane jets and offset jets issued from plane wall. Four angles and three values of the nozzle width are used. Also, different values of Reynolds number between 9000 and 39000 have been examined. It is noted that the wall angle and the nozzle width linearly affect the location of the merging and the combining points, while Reynolds number plays no role in their location. The effect of the wall angle on the reattachment point is found to be non linear.


2018 ◽  
Vol 180 ◽  
pp. 02018 ◽  
Author(s):  
Tomas Daubner ◽  
Jens Kizhofer ◽  
Mircea Dinulescu

This article describes an experimental investigation in the near field of five parallel plane jets. The study applies 2D Particle Image Velocimetry (PIV) for ventilated and unventilated jets, where ventilated means exiting into a duct with expansion ratio 3.5 and unventilated means exiting to the free atmosphere. Results are presented for Reynolds numbers 1408, 5857 and 10510. The Reynolds number is calculated for the middle channel and is based on the height of the nozzle (channel) equivalent diameter 2h. All characteristic regions of the methodology to describe multiple interacting jets are observed by the PIV measurements - converging, merging and combined. Each of the five parallel channels has an aspect ratio of 25 defined as nozzle width (w) to height (h). The channels have a length of 185 times the channel height guaranteeing a fully developed velocity profile at the exit from the channel. Spacing between the single plane jets is 3 times the channel height. The near field of multiple mixing jets is depended on outlet nozzle geometry. Blunt geometry of the nozzle was chosen (sudden contraction).


2004 ◽  
Vol 7 (2) ◽  
pp. 135-142 ◽  
Author(s):  
N. Fujisawa ◽  
K. Nakamura ◽  
K. Srinivas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document