scholarly journals A finite element method for the solution of singular integral equations

1978 ◽  
Vol 4 (3) ◽  
pp. 219-224 ◽  
Author(s):  
Dac Q. Dang ◽  
D.H. Norrie
2021 ◽  
pp. 108128652110431
Author(s):  
Rui Cao ◽  
Changwen Mi

This paper solves the frictionless receding contact problem between a graded and a homogeneous elastic layer due to a flat-ended rigid indenter. Although its Poisson’s ratio is kept as a constant, the shear modulus in the graded layer is assumed to exponentially vary along the thickness direction. The primary goal of this study is to investigate the functional dependence of both contact pressures and the extent of receding contact on the mechanical and geometric properties. For verification and validation purposes, both theoretical analysis and finite element modelings are conducted. In the analytical formulation, governing equations and boundary conditions of the double contact problem are converted into dual singular integral equations of Cauchy type with the help of Fourier integral transforms. In view of the drastically different singularity behavior of the stationary and receding contact pressures, Gauss–Chebyshev quadratures and collocations of both the first and the second kinds have to be jointly used to transform the dual singular integral equations into an algebraic system. As the resultant algebraic equations are nonlinear with respect to the extent of receding contact, an iterative algorithm based on the method of steepest descent is further developed. The semianalytical results are extensively verified and validated with those obtained from the graded finite element method, whose implementation details are also given for easy reference. Results from both approaches reveal that the property gradation, indenter width, and thickness ratio all play significant roles in the determination of both contact pressures and the receding contact extent. An appropriate combination of these parameters is able to tailor the double contact properties as desired.


2021 ◽  
Vol 7 (7) ◽  
pp. 26-32
Author(s):  
Viktor B. DEMIDOVICH ◽  

Development of an electrical calculation method plays the leading role in simulating induction devices. In modeling electrical devices and complexes, it is often necessary to simultaneously solve both chain and field problems, i.e., to deal with both lumped and distributed parameters. The article considers the method of integral equations for induction systems with non-magnetic and ferromagnetic loading, which is based on the theory of long-range action. The method’s key statement is that the field at any point is determined as the sum of the fields produced by all sources, including primary and secondary ones. Another finite element method is based on the theory of short-range action, which describes the electromagnetic wave propagation from point to point, its refraction and reflection at the boundaries of media. The article substantiates the development of a combined method based on using the method of integral equations for calculating the input parameters of inductors (an external problem) and the finite element method for calculating the field distribution in the load (an internal problem). The combined method has well proven itself in modeling induction heating and melting of metals and oxides, heating a tape in a transverse magnetic field, induction plasmatrons, and casting aluminum into an electromagnetic crystallizer.


Sign in / Sign up

Export Citation Format

Share Document