Numerical analysis of magnetoelastic buckling of fusion reactor components

1995 ◽  
Vol 27 (1-2) ◽  
pp. 490-498 ◽  
Author(s):  
K Demachi
2021 ◽  
Vol 32 (7) ◽  
Author(s):  
Bu-Er Wang ◽  
Shi-Chao Zhang ◽  
Zhen Wang ◽  
Jiang-Tao Jia ◽  
Zhi-Bin Chen

1985 ◽  
Vol 3 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Kenzo Miya ◽  
Mitsuru Uesaka ◽  
Yuichi Ogawa ◽  
Taiji Hamada

1990 ◽  
Vol 26 (2) ◽  
pp. 869-872 ◽  
Author(s):  
M. Hashimoto ◽  
H. Hashizume ◽  
T. Sugiura ◽  
T. Takagi ◽  
K. Miya ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4070
Author(s):  
Tao Dai ◽  
Liangzhi Cao ◽  
Qingming He ◽  
Hongchun Wu ◽  
Wei Shen

The China Fusion Engineering Test Reactor (CFETR) is a tokamak device to validate and demonstrate fusion engineering technology. In CFETR, the breeding blanket is a vital important component that is closely related to the performance and safety of the fusion reactor. Neutronics/thermal-hydraulics (N/TH) coupling effect is significant in the numerical analysis of the fission reactor. However, in the numerical analysis of the fusion reactor, the existing coupling code system mostly adopts the one-way coupling method. The ignorance of the two-way N/TH coupling effect would lead to inaccurate results. In this paper, the MCNP/FLUENT code system is developed based on the 3D-1D-2D hybrid coupling method. The one-way and two-way N/TH coupling calculations for two typical blanket concepts, the helium-cooled solid breeder (HCSB) blanket and the water-cooled ceramic breeder (WCCB) blanket, are carried out to study the two-way N/TH coupling effect in CFETR. The numerical results show that, compared with the results from the one-way N/TH coupling calculation, the tritium breeding ration (TBR) calculated with the two-way N/TH calculation decreases by −0.11% and increases by 4.45% for the HCSB and WCCB blankets, respectively. The maximum temperature increases by 1 °C and 29 °C for the HCSB and WCCB blankets, respectively.


2001 ◽  
Vol 38 (7) ◽  
pp. 571-576
Author(s):  
Ryoichi KURIHARA ◽  
Toshio AJIMA ◽  
Shuzo UEDA ◽  
Yasushi SEKI

2021 ◽  
Vol 12 (1) ◽  
pp. 187
Author(s):  
Michela Angelucci ◽  
Bruno Gonfiotti ◽  
Bradut-Eugen Ghidersa ◽  
Xue Zhou Jin ◽  
Mihaela Ionescu-Bujor ◽  
...  

The validation of numerical tools employed in the analysis of incidental transients in a fusion reactor is a topic of main concern. KIT is taking part in this task providing both experimental data and by performing numerical analysis in support of the main codes used for the safety analyses of the Helium Cooled Pebble Bed (HCPB) blanket concept. In recent years, an experimental campaign has been performed in the KIT-HELOKA facility to investigate the behavior of a First Wall Mock-Up (FWMU) under Loss Of Flow Accident (LOFA) conditions. The aim of the experimental campaign was twofold: to check the expected DEMO thermal-hydraulics conditions during normal and off-normal conditions and to provide robust data for code validation. The present work is part of these validation efforts, and it deals with the analysis of the LOFA experimental campaign with the system code MELCOR 1.8.6 for fusion. A best-estimate methodology has been used in support of this analysis to ease the distinction between user’s assumptions and code limitations. The numerical analyses are here described together with their goals, achievements, and lesson learnt.


Author(s):  
E. Ruedl ◽  
P. Schiller

The low Z metal aluminium is a potential matrix material for the first wall in fusion reactors. A drawback in the application of A1 is the rel= atively high amount of He produced in it under fusion reactor conditions. Knowledge about the behaviour of He during irradiation and deformation in Al, especially near the surface, is therefore important.Using the TEM we have studied Al disks of 3 mm diameter and 0.2 mm thickness, which were perforated at the centre by double jet polishing. These disks were bombarded at∽200°C to various doses with α-particles, impinging at any angle and energy up to 1.5 MeV at both surfaces. The details of the irradiations are described in Ref.1. Subsequent observation indicated that in such specimens uniformly distributed He-bubbles are formed near the surface in a layer several μm thick (Fig.1).After bombardment the disks were deformed at 20°C during observation by means of a tensile device in a Philips EM 300 microscope.


Sign in / Sign up

Export Citation Format

Share Document