scholarly journals SU(N) Antiferromagnets and strongly coupled QED: Effective field theory for Josephson junctions arrays

1993 ◽  
Vol 33 (3) ◽  
pp. 192-208
Author(s):  
M.C. Diamantini ◽  
P. Sodano ◽  
E. Langmann ◽  
G.W. Semenoff
Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 723
Author(s):  
Burt Ovrut

The compactification from the 11-dimensional Horava-Witten orbifold to 5-dimensional heterotic M-theory on a Schoen Calabi-Yau threefold is reviewed, as is the specific S U ( 4 ) vector bundle leading to the “heterotic standard model” in the observable sector. A generic formalism for a consistent hidden sector gauge bundle, within the context of strongly coupled heterotic M-theory, is presented. Anomaly cancellation and the associated bulk space 5-branes are discussed in this context. The further compactification to a 4-dimensional effective field theory on a linearized BPS double domain wall is then presented to order κ 11 4 / 3 . Specifically, the generic constraints required for anomaly cancellation and by the linearized domain wall solution, restrictions imposed by the vanishing of the D-terms and, finally, the constraints imposed by the necessity for positive, perturbative squared gauge couplings to this order are presented in detail.


2016 ◽  
Vol 31 (19) ◽  
pp. 1630026
Author(s):  
Thomas Flacke

Composite Higgs models have the potential to provide a solution to the hierarchy problem and a dynamical explanation for the generation of the Higgs potential. They can be tested at the LHC as the new sector which underlies electroweak symmetry breaking must become strong in the TeV regime, which implies additional bound states beyond the Higgs. In this paper, we first discuss prospects and search strategies for top partners (and other quark partners) in the strongly coupled sector, which we study in an effective field theory setup. In the second part of the proceedings, we go beyond the effective field theory approach. We discuss potential UV embeddings for composite Higgs models which contain a Higgs as well as top partners. We show that in all of these models, additional pseudo-Nambu–Goldstone bosons beyond the Higgs are present. In particular, all of the models contain a pseudoscalar which couples to the Standard Model gauge fields through Wess–Zumino–Witten terms, providing a prime candidate for a di-boson (including a di-photon) resonance. The models also contain colored pNGBs which can be searched for at the LHC.


2015 ◽  
Vol 30 (24) ◽  
pp. 1550155
Author(s):  
Yu Nakayama

Gauging extra matter is a common way to couple two CFTs discontinuously. We may consider gauging matter by strongly coupled gauge theories at criticality rather than by weakly coupled (asymptotic free) gauge theories. It often triggers relevant deformations and possibly leads to a nontrivial fixed point. In many examples such as the IR limit of SQCDs (and their variants), the relevant RG flow induced by this strong gauging makes the total central charge [Formula: see text] increase rather than decrease compared with the sum of the original decoupled CFTs. The dilaton effective field theory argument given by Komargodski and Schwimmer does not apply because strong gauging is not a simple deformation by operators in the original two decoupled CFTs and it may not be UV complete. When the added matter is vector-like, one may emulate strong gauging in a UV completed manner by decoupling of ghost matter. While the UV completed description makes the dilaton effective field theory argument possible, due to the nonunitarity, we cannot conclude the positivity of the central charge difference in accordance with the observations in various examples that show the contrary.


Effective field theory (EFT) is a general method for describing quantum systems with multiple-length scales in a tractable fashion. It allows us to perform precise calculations in established models (such as the standard models of particle physics and cosmology), as well as to concisely parametrize possible effects from physics beyond the standard models. EFTs have become key tools in the theoretical analysis of particle physics experiments and cosmological observations, despite being absent from many textbooks. This volume aims to provide a comprehensive introduction to many of the EFTs in use today, and covers topics that include large-scale structure, WIMPs, dark matter, heavy quark effective theory, flavour physics, soft-collinear effective theory, and more.


2008 ◽  
Author(s):  
Ulf-G. Meiβner ◽  
Hideyuki Sakai ◽  
Kimiko Sekiguchi ◽  
Benjamin F. Gibson

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Hoback ◽  
Sarthak Parikh

Abstract We conjecture a simple set of “Feynman rules” for constructing n-point global conformal blocks in any channel in d spacetime dimensions, for external and exchanged scalar operators for arbitrary n and d. The vertex factors are given in terms of Lauricella hypergeometric functions of one, two or three variables, and the Feynman rules furnish an explicit power-series expansion in powers of cross-ratios. These rules are conjectured based on previously known results in the literature, which include four-, five- and six-point examples as well as the n-point comb channel blocks. We prove these rules for all previously known cases, as well as two new ones: the seven-point block in a new topology, and all even-point blocks in the “OPE channel.” The proof relies on holographic methods, notably the Feynman rules for Mellin amplitudes of tree-level AdS diagrams in a scalar effective field theory, and is easily applicable to any particular choice of a conformal block beyond those considered in this paper.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Zhengwen Liu ◽  
Rafael A. Porto ◽  
Zixin Yang

Abstract Building upon the worldline effective field theory (EFT) formalism for spinning bodies developed for the Post-Newtonian regime, we generalize the EFT approach to Post-Minkowskian (PM) dynamics to include rotational degrees of freedom in a manifestly covariant framework. We introduce a systematic procedure to compute the total change in momentum and spin in the gravitational scattering of compact objects. For the special case of spins aligned with the orbital angular momentum, we show how to construct the radial action for elliptic-like orbits using the Boundary-to-Bound correspondence. As a paradigmatic example, we solve the scattering problem to next-to-leading PM order with linear and bilinear spin effects and arbitrary initial conditions, incorporating for the first time finite-size corrections. We obtain the aligned-spin radial action from the resulting scattering data, and derive the periastron advance and binding energy for circular orbits. We also provide the (square of the) center-of-mass momentum to $$ \mathcal{O}\left({G}^2\right) $$ O G 2 , which may be used to reconstruct a Hamiltonian. Our results are in perfect agreement with the existent literature, while at the same time extend the knowledge of the PM dynamics of compact binaries at quadratic order in spins.


Sign in / Sign up

Export Citation Format

Share Document