Bond distance determination from x-ray absorption near edge structure

1989 ◽  
Vol 158 (1-3) ◽  
pp. 415-416 ◽  
Author(s):  
P. Mahto ◽  
A.R. Chetal
2007 ◽  
Vol 71 (5) ◽  
pp. 539-552 ◽  
Author(s):  
A. A. Finch ◽  
N. Allison

AbstractStrontium and Mg in calcite and aragonite are widely used as proxies of temperature in palaeoenvironmental reconstructions. We use X-ray absorption fine structure (XAFS) to examine Sr and Mg substitution in calcite and aragonite. We have measured the K-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) of Mg and Sr-bearing calcite and aragonite, plus the carbonates: strontianite, hydromagnesite, magnesite, dolomite and a suite of calcites with differing amounts of Mg. The Sr substitutes ideally for Ca in aragonite but causes a small (2%) dilation of the site. Strontium substitutes for octahedral Ca in calcite but with a 6.5% dilation and distortion. Magnesium in the calcites studied provides a variable XANES indicating that the Mg structural state in calcite is variable. Refinement of EXAFS gives Mg–O bond distances of ∼2.12 Å, which are much smaller than the Ca–O bond distance of 2.35 Å but consistent with published amounts of relaxation of the calcite structure. The XANES and EXAFS are consistent with a model whereby some calcites contain nanodomains, e.g. of dolomite and/or huntite structures. The variability in the XANES can be explained by domains of different types and/or sizes. Substitution of Mg into aragonite has 9-fold coordination but relatively short bond distances (2.08 Å) demonstrating either: (1) substantial distortion of the site; or (2) that Mg is accommodated in nanodomains of an unknown phase. Variability in the Mg structural state in calcite may be linked to the variety of temperature dependences observed, e.g. in foraminiferal calcite


Author(s):  
H. Ade ◽  
B. Hsiao ◽  
G. Mitchell ◽  
E. Rightor ◽  
A. P. Smith ◽  
...  

We have used the Scanning Transmission X-ray Microscope at beamline X1A (X1-STXM) at Brookhaven National Laboratory (BNL) to acquire high resolution, chemical and orientation sensitive images of polymeric samples as well as point spectra from 0.1 μm areas. This sensitivity is achieved by exploiting the X-ray Absorption Near Edge Structure (XANES) of the carbon K edge. One of the most illustrative example of the chemical sensitivity achievable is provided by images of a polycarbonate/pol(ethylene terephthalate) (70/30 PC/PET) blend. Contrast reversal at high overall contrast is observed between images acquired at 285.36 and 285.69 eV (Fig. 1). Contrast in these images is achieved by exploring subtle differences between resonances associated with the π bonds (sp hybridization) of the aromatic groups of each polymer. PET has a split peak associated with these aromatic groups, due to the proximity of its carbonyl groups to its aromatic rings, whereas PC has only a single peak.


2016 ◽  
Vol 88 (7) ◽  
pp. 3826-3835 ◽  
Author(s):  
Bernhard Hesse ◽  
Murielle Salome ◽  
Hiram Castillo-Michel ◽  
Marine Cotte ◽  
Barbara Fayard ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yiming Chen ◽  
Chi Chen ◽  
Chen Zheng ◽  
Shyam Dwaraknath ◽  
Matthew K. Horton ◽  
...  

AbstractThe L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow. The data is disseminated through the Materials Project and addresses a critical need for L-edge XANES spectra among the research community.


MRS Advances ◽  
2017 ◽  
Vol 2 (29) ◽  
pp. 1545-1550 ◽  
Author(s):  
Nicholas L. McDougall ◽  
Jim G. Partridge ◽  
Desmond W. M. Lau ◽  
Philipp Reineck ◽  
Brant C. Gibson ◽  
...  

ABSTRACTCubic boron nitride (cBN) is a synthetic wide band gap material that has attracted attention due to its high thermal conductivity, optical transparency and optical emission. In this work, defects in cBN have been investigated using experimental and theoretical X-ray absorption near edge structure (XANES). Vacancy and O substitutional defects were considered, with O substituted at the N site (ON) to be the most energetically favorable. All defects produce unique signatures in either the B or N K-edges and can thus be identified using XANES. The calculations coupled with electron-irradiation / annealing experiments strongly suggest that ON is the dominant defect in irradiated cBN and remains after annealing. This defect is a likely source of optical emission in cBN.


2009 ◽  
Vol 43 (17) ◽  
pp. 6535-6540 ◽  
Author(s):  
Yoshio Takahashi ◽  
Takuro Miyoshi ◽  
Masayuki Higashi ◽  
Hikari Kamioka ◽  
Yutaka Kanai

2006 ◽  
Vol 89 (22) ◽  
pp. 222113 ◽  
Author(s):  
Sukit Limpijumnong ◽  
M. F. Smith ◽  
S. B. Zhang
Keyword(s):  
X Ray ◽  
P Type ◽  

Sign in / Sign up

Export Citation Format

Share Document