Ion implantation and fatigue crack initiation: Interaction of persistent slip bands with modified surface layers

1989 ◽  
Vol 115 ◽  
pp. 331-336 ◽  
Author(s):  
D.S Grummon ◽  
D.J Morrison ◽  
J.W Jones ◽  
G.S Was
2017 ◽  
Vol 32 (23) ◽  
pp. 4276-4286 ◽  
Author(s):  
Heinz Werner Höppel ◽  
Philip Goik ◽  
Christian Krechel ◽  
Mathias Göken

Abstract


1991 ◽  
Vol 246 ◽  
Author(s):  
D. S. Grummon ◽  
S. Nam ◽  
L. Chang

AbstractAlloys based on near-equiatomic NiTi are capable of thermoelastic martensite transformations which give rise to shape memory and superelasticity (pseudoplasticity) effects. In particular, at temperatures above Ms and Af but below Md, NiTi alloys can deform by mechanisms of stressinduced martensite transformation and may display large anelastic strains which involve little or no deformation by slip. Under these conditions, the strain-controlled fatigue resistance of NiTi alloys may be exceptionally high [1]. In contrast, fcc metals like copper will, during strain controlled fatigue, eventuate severe plastic strain localization in the form of persistent slip bands (PSBs), whose behavior at free surfaces is intimately associated with fatigue crack initiation [2]. It is well known that fatigue crack initiation in fcc metals can be delayed by modifying surfacebreaking PSB structure or environment [3,4]. However, any attempt to strengthen the surface region in order to impede surface expression of persistent slip bands must contend with the large subsurface strain localizations enforced by the PSBs, which subject the film to strain cycling at roughly the characteristic PSB shear strain amplitude. Thermoelastic nickel-titanium alloys, capable of pseudoplastic straining, may be uniquely suited to the role of surface protection in situations where fatigue crack initiation is associated with PSB interaction with the external environment. In the present work, thin surface microalloys of NiTi, produced by ion sputtering, have been applied to polycrystalline copper fatigue specimens that were subsequently subjected to both monotonic loading, and fatigue under plastic strain control to produce mature PSB structures in the bulk material. Optical and scanning electron microscopy studies are described which assess the effect of the NiTi surface microalloy on the behavior of PSBs in the near surface region, and the attendant effect of the films on surface behavior of persistent slip bands. Although the results are incomplete with respect to the effects of the film on fatigue crack initiation, it has been shown for the first time that martensite transformation can be stress-induced (at temperatures above Ms) in a thin NiTi film on a plastically deforming substrate. This finding augurs well for the potential of such films to effectively suppress slip band penetration during low cycle fatigue.


2015 ◽  
Vol 99 ◽  
pp. 325-336 ◽  
Author(s):  
Baptiste Larrouy ◽  
Patrick Villechaise ◽  
Jonathan Cormier ◽  
Olivier Berteaux

2019 ◽  
Vol 60 (2) ◽  
pp. 181-189
Author(s):  
A. Akai ◽  
D. Shiozawa ◽  
T. Yamada ◽  
T. Sakagami

Abstract Recently, a technique for rapidly determining a material’s fatigue limit by measuring energy dissipation using infrared thermography has received increasing interest. Measuring the energy dissipation of a material under fatigue loading allows the rapid determination of a stress level that empirically coincides with its fatigue limit. To clarify the physical implications of the rapid fatigue limit determination, the relationship between energy dissipation and fatigue damage initiation process was investigated. To discuss the fatigue damage initiation process at grain size scale, we performed high-spatial-resolution dissipated energy measurements on type 316L austenitic stainless steel, and observed the slip bands on the same side of the specimen. The preprocessing of dissipated energy measurement such as motion compensation and a smoothing filter was applied. It was found that the distribution of dissipated energy obtained by improved spatial resolution measurement pinpointed the location of fatigue crack initiation. Owing to the positive correlation between the magnitude of dissipated energy and number of slip bands, it was suggested that the dissipated energy was associated with the behavior of slip bands, with regions of high dissipated energy predicting the location of fatigue crack initiation.


Sign in / Sign up

Export Citation Format

Share Document