Grain boundary–slip bands interactions: Impact on the fatigue crack initiation in a polycrystalline forged Ni-based superalloy

2015 ◽  
Vol 99 ◽  
pp. 325-336 ◽  
Author(s):  
Baptiste Larrouy ◽  
Patrick Villechaise ◽  
Jonathan Cormier ◽  
Olivier Berteaux
2019 ◽  
Vol 60 (2) ◽  
pp. 181-189
Author(s):  
A. Akai ◽  
D. Shiozawa ◽  
T. Yamada ◽  
T. Sakagami

Abstract Recently, a technique for rapidly determining a material’s fatigue limit by measuring energy dissipation using infrared thermography has received increasing interest. Measuring the energy dissipation of a material under fatigue loading allows the rapid determination of a stress level that empirically coincides with its fatigue limit. To clarify the physical implications of the rapid fatigue limit determination, the relationship between energy dissipation and fatigue damage initiation process was investigated. To discuss the fatigue damage initiation process at grain size scale, we performed high-spatial-resolution dissipated energy measurements on type 316L austenitic stainless steel, and observed the slip bands on the same side of the specimen. The preprocessing of dissipated energy measurement such as motion compensation and a smoothing filter was applied. It was found that the distribution of dissipated energy obtained by improved spatial resolution measurement pinpointed the location of fatigue crack initiation. Owing to the positive correlation between the magnitude of dissipated energy and number of slip bands, it was suggested that the dissipated energy was associated with the behavior of slip bands, with regions of high dissipated energy predicting the location of fatigue crack initiation.


2018 ◽  
Vol 37 (4) ◽  
pp. 289-298
Author(s):  
Wei Chao ◽  
Liu Guang-lei ◽  
Wan Hao ◽  
Li Yu-shan ◽  
Si Nai-chao

AbstractThe effect of heat treatment on the microstructure and thermal fatigue properties were studied by means of optical microscope (OM) and scanning electron microscope (SEM). Energy dispersive X-ray detector (EDX) was used to analyze the role of phase composition in fatigue crack propagation. The results show that after heat treatment, the ultimate tensile strength increased from 285 MPa to 368 MPa and the elongation increased from 5.8 % to 6.5 %. During the initiation of fatigue crack, the crack was mainly propagated through eutectic Si area. With the long needles of eutectic Si particles spherodized after heat treatment, the split action from brittle Si particles to α-Al matrix was reduced and prolonged the fatigue crack initiation period. After aging for 6 h, the dispersed precipitation of secondary phases (Al2Cu, Mg2Si) elevated the driving force of crack propagation, blocked the spread of crack in the grain boundary, decreased the rate of fatigue crack growth and improved the fatigue resistance of alloy at the same time. In the process of crack initiation, the surplus-phase around the grain boundary fell off from α-Al matrix under thermal cycling stresses. The combination of interfaces was weaken by cycling stress and the fatigue crack was finally grown up in the weakness area between matrix and secondary phase.


1982 ◽  
Vol 14 (1) ◽  
pp. 82-83
Author(s):  
V. I. Vladimirov ◽  
P. Lukaš

Sign in / Sign up

Export Citation Format

Share Document