Role of GABAB inhibition of the primate motor cortex in controls of reaching movement in freely moving, infant macaque monkeys

1992 ◽  
Vol 17 ◽  
pp. 220
Author(s):  
Kisou Kubota
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Lavrov ◽  
Timur Latypov ◽  
Elvira Mukhametova ◽  
Brian Lundstrom ◽  
Paola Sandroni ◽  
...  

AbstractElectrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.


Author(s):  
Wei-Wei Zhang ◽  
Rong-Rong Li ◽  
Jie Zhang ◽  
Jie Yan ◽  
Qian-Hui Zhang ◽  
...  

AbstractWhile the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


1990 ◽  
Vol 161 (Supplement) ◽  
pp. 95-120 ◽  
Author(s):  
EIICHI IWAI ◽  
MASAO YUKIE ◽  
JOJI WATANABE ◽  
KAZUO HIKOSAKA ◽  
HIDEO SUYAMA ◽  
...  

2020 ◽  
Vol 598 (4) ◽  
pp. 839-851 ◽  
Author(s):  
Giovanna Pilurzi ◽  
Francesca Ginatempo ◽  
Beniamina Mercante ◽  
Luigi Cattaneo ◽  
Giovanni Pavesi ◽  
...  

2010 ◽  
Vol 21 (4) ◽  
pp. 756-768 ◽  
Author(s):  
Anne K. Rehme ◽  
Gereon R. Fink ◽  
D. Yves von Cramon ◽  
Christian Grefkes
Keyword(s):  

1974 ◽  
Vol 12 (2) ◽  
pp. 177-198 ◽  
Author(s):  
Rebekah L. Smith ◽  
Thomas Parks ◽  
Gary Lynch

Sign in / Sign up

Export Citation Format

Share Document