Dynamic load carrying capacity of robotic manipulators with joint elasticity imposing accuracy constraints

1994 ◽  
Vol 13 (3) ◽  
pp. 219-229 ◽  
Author(s):  
M.H. Korayem ◽  
A. Basu
2016 ◽  
Vol 2016 ◽  
pp. 1-28 ◽  
Author(s):  
Wanjin Guo ◽  
Ruifeng Li ◽  
Chuqing Cao ◽  
Xunwei Tong ◽  
Yunfeng Gao

A new methodology using a direct method for obtaining the best found trajectory planning and maximum dynamic load-carrying capacity (DLCC) is presented for a 5-degree of freedom (DOF) hybrid robot manipulator. A nonlinear constrained multiobjective optimization problem is formulated with four objective functions, namely, travel time, total energy involved in the motion, joint jerks, and joint acceleration. The vector of decision variables is defined by the sequence of the time-interval lengths associated with each two consecutive via-points on the desired trajectory of the 5-DOF robot generalized coordinates. Then this vector of decision variables is computed in order to minimize the cost function (which is the weighted sum of these four objective functions) subject to constraints on joint positions, velocities, acceleration, jerks, forces/torques, and payload mass. Two separate approaches are proposed to deal with the trajectory planning problem and the maximum DLCC calculation for the 5-DOF robot manipulator using an evolutionary optimization technique. The adopted evolutionary algorithm is the elitist nondominated sorting genetic algorithm (NSGA-II). A numerical application is performed for obtaining best found solutions of trajectory planning and maximum DLCC calculation for the 5-DOF hybrid robot manipulator.


Author(s):  
S. Lamancusa ◽  
D. A. Saravanos ◽  
H. J. Sommer

Abstract Structural optimization can result in robotic arms with significantly improved stiffness and load carrying capacity. The geometrical shape of the manipulator links can be optimized for maximum stiffness-to-weight and strength-to-weight ratios. The problem of stiffening and strengthening a manipulator is solved by optimal redistribution of the available material without increasing the total mass of the manipulator. Since manipulators are programmed to move through a range of postures, thereby creating different loading conditions on the links, a multi-posture design criteria is implemented to provide a more uniform stiffness and strength over the range of possible postures. Finite element based performance criteria are developed which facilitate the simultaneous maximization of specific stiffness and strength. Three application examples on a SCARA class arm illustrate the dramatic potential for simultaneous improvements in specific stiffness and specific strength. The significance of multiple postures on the optimal design, the merits of tapered versus straight link shapes, and the relation of maximum stiffness to maximum strength, are also examined.


2015 ◽  
Vol 713-715 ◽  
pp. 795-799 ◽  
Author(s):  
Yong Liu ◽  
Qing Xuan Jia ◽  
Gang Chen ◽  
Han Xu Sun ◽  
Jun Jie Peng

Two kinds of dynamic load-carrying capacity (DLCC) evaluation methods for free-floating space manipulators (FFSM) in two typical on-orbit operating missions are proposed in this paper. DLCC evaluation is transformed into nonlinear programming problem (NPP) by introducing load-carrying coefficient to measure DLCC: in point-to-point task, penalty function method is adopted to approach the boundary of feasible region rapidly, then DLCC can be obtained through following iterations; in trajectory tracking task, NPP is solved by using multiple one-dimensional search, the dynamic load-carrying coefficient in discontinuous feasible region can be quickly solved through adjusting the searching boundary constantly. The effectiveness of the mentioned methods is verified by simulations.


2000 ◽  
Vol 1696 (1) ◽  
pp. 136-143 ◽  
Author(s):  
Andrzej S. Nowak ◽  
Junsik Eom ◽  
Ahmet Sanli

Application of field testing for an efficient evaluation and control of live-load effects on bridges is described. A system is considered that involves monitoring of various parameters, including vehicle weight, dynamic load component, and load effects (moment, shear force, stress, strain) in bridge components, and verification of the minimum load-carrying capacity of the bridge. Therefore, an important part of the study is development of a procedure for measuring live-load spectra on bridges. Truck weight, including gross vehicle weight, axle loads, and spacing, is measured to determine the statistical parameters of the actual live load. Strain and stress are measured in various components of girder bridges to determine component-specific load. Minimum load-carrying capacity is verified by proof load tests. It has been confirmed that live-load effects are strongly site specific and component specific. The measured strains were relatively low and considerably lower than predicted by analysis. Dynamic load factor decreases with increasing static load effect. For fully loaded trucks, it is lower than the code-specified value. Girder distribution factors observed in the tests are also lower than the values specified by the design code. The proof load test results indicated that the structural response is linear with the absolute value of measured strain considerably lower than expected. Field tests confirmed that the tested bridges are adequate to carry normal truck traffic.


Sign in / Sign up

Export Citation Format

Share Document