Histamine stimulates normal human melanocytes in vitro: one of the possible inducers of hyperpigmentation in urticaria pigmentosa

1993 ◽  
Vol 6 (2) ◽  
pp. 146-154 ◽  
Author(s):  
Yasushi Tomita ◽  
Kazuhisa Maeda ◽  
Hachiro Tagami
1994 ◽  
Vol 107 (4) ◽  
pp. 983-992 ◽  
Author(s):  
A. Tang ◽  
M.S. Eller ◽  
M. Hara ◽  
M. Yaar ◽  
S. Hirohashi ◽  
...  

E- and P-cadherin are calcium (Ca2+)-dependent cell adhesion molecules important in the morphogenesis and maintenance of skin structure. By use of flow cytometry and specific antibodies, we now show that cultured human melanocytes express E- and P-cadherin on their surfaces, and that these molecules have the same characteristics as reported for other cell types. Specifically, melanocyte cadherins are sensitive to trypsin digestion in the absence of Ca2+ and are protected from trypsin degradation by Ca2+, and are functional at 37 degrees C but not at 4 degrees C. We further show that melanocytes contain mRNA transcripts encoding both E- and P-cadherin. Adhesion of cultured melanocytes to keratinocyte monolayers is abolished by pre-treatment of the melanocytes with trypsin/EDTA, which degrades E- and P-cadherins, is greatly reduced by anti-E-cadherin antibodies and is slightly reduced by antibodies to P-cadherin, alpha 2, alpha 3 and beta 1 integrins. In contrast to normal melanocytes, eight of nine melanoma cell lines lacked E-cadherin (or expressed markedly reduced levels) and five were negative for P-cadherin. Melanoma cells also failed to adhere to keratinocyte monolayers. These results demonstrate that normal human melanocytes express functional E- and P-cadherin and that E-cadherin is primarily responsible for adhesion of human melanocytes to keratinocytes in vitro. In addition, transformed melanocytes express markedly reduced levels of E- and P-cadherin, and exhibit decreased affinity for normal keratinocytes in vitro, suggesting that loss of cadherins may play a role in melanoma metastasis.


1987 ◽  
Vol 89 (3) ◽  
pp. 299-301 ◽  
Author(s):  
Yasushi Tomita ◽  
Masatoshi Iwamoto ◽  
Takayuki Masuda ◽  
Hachiro Tagami

1993 ◽  
Vol 205 (2) ◽  
pp. 388-395 ◽  
Author(s):  
I.C. Le Poole ◽  
R.M.J.G.J. van den Wijngaard ◽  
W. Westerhof ◽  
R.P. Verkruisen ◽  
R.P. Dutrieux ◽  
...  

1993 ◽  
Vol 105 (1) ◽  
pp. 179-190 ◽  
Author(s):  
G. Zambruno ◽  
P.C. Marchisio ◽  
A. Melchiori ◽  
S. Bondanza ◽  
R. Cancedda ◽  
...  

Integrin receptors of human melanocytes in vivo and of melanocytes isolated and cultured from in vitro reconstituted normal human epidermis were investigated. Melanocytes were studied by high-resolution immunocytochemistry of in situ epidermis and were found to expose only the integrin subunits alpha 3, alpha 6, alpha v and beta 1 on their plasma membrane surface. Instead, cultured normal melanocytes expressed alpha 3 beta 1, alpha 5 beta 1, alpha 6 beta 1 and alpha v beta 3, which were immunoprecipitated from both metabolically and surface-labeled cells. Beta 1 integrins were diffused on the adhesion surface, while alpha v beta 3 was clustered in focal contacts both in control cells and upon dendrite induction with phorbol 12-myristate 13-acetate (PMA). The functional roles of integrins were studied in vitro by cell adhesion, spreading and migration assays. The sum of the data indicated that, in normal human melanocytes: (i) adhesion to defined substrata is mainly mediated by specific beta 1 integrins; (ii) spreading is mainly modulated by alpha v beta 3; (iii) the beta 1 and beta 3 heterodimers cooperate in regulating migration. The in vitro expression of two integrins (alpha v beta 3 and alpha 5 beta 1) that are not exposed in situ, and their role in the spreading and migratory properties of melanocytes, strongly suggest that they are involved in regenerating a normally pigmented epidermis during wound healing by controlling melanocyte spreading and migration over a provisional matrix. Tumor promoters, such as PMA, selectively increased the expression of alpha 3 beta 1. We suggest that this integrin might be involved in melanocyte migration on the newly formed basement membrane during wound healing as well as in intercellular recognition of adjacent keratinocytes.


2018 ◽  
Vol 26 (1) ◽  
pp. 85-89 ◽  
Author(s):  
Michał Otręba ◽  
Artur Beberok ◽  
Dorota Wrześniok ◽  
Ewa Buszman

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Stephanie H. Shirley ◽  
Kristine von Maltzan ◽  
Paige O. Robbins ◽  
Donna F. Kusewitt

Calprotectin, a heterodimer of S100A8 and S100A9, is a proinflammatory cytokine released from ultraviolet radiation-exposed keratinocytes. Calprotectin binds to Toll-like receptor 4, the receptor for advanced glycation end-products, and extracellular matrix metalloproteinase inducer on target cells to stimulate migration. Melanocytes and melanoma cells produce little if any calprotectin, but they do express receptors for the cytokine. Thus, keratinocyte-derived calprotectin has the potential to activate melanocytes and melanoma cells within the epidermis in a paracrine manner. We examined the ability of calprotectin to stimulate proliferation and migration in normal human melanocytes and melanoma cellsin vitro. We first showed, by immunofluorescence and quantitative RT-PCR, that the melanocytic cells employed expressed a calprotectin receptor, the receptor for advanced end-products. We then demonstrated that calprotectin significantly enhanced proliferation, migration, and Matrigel invasion in both normal human melanocytes and melanoma cells. Thus, calprotectin is one of the numerous paracrine factors released by ultraviolet radiation-exposed keratinocytes that may promote melanomagenesis and is a potential target for melanoma prevention or therapy.


Sign in / Sign up

Export Citation Format

Share Document