Characterization of cobalt Fischer-Tropsch catalysts I. Unpromoted cobalt-silica gel catalysts

1995 ◽  
Vol 123 (1) ◽  
pp. 23-36 ◽  
Author(s):  
H MING ◽  
B BAKER
Keyword(s):  
2014 ◽  
Author(s):  
Sukanta Mondal ◽  
Kaniz Ferdous ◽  
M. Rakib Uddin ◽  
Maksudur R. Khan ◽  
M. A. Islam ◽  
...  
Keyword(s):  

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1301
Author(s):  
Zully J. Suárez Montenegro ◽  
Gerardo Álvarez-Rivera ◽  
Jose A. Mendiola ◽  
Elena Ibáñez ◽  
Alejandro Cifuentes

This work reports the use of GC-QTOF-MS to obtain a deep characterization of terpenoid compounds recovered from olive leaves, which is one of the largest by-products generated by the olive oil industry. This work includes an innovative supercritical CO2 fractionation process based on the online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption for the selective enrichment of terpenoids in the different olive leaves extracts. The selectivity of different commercial adsorbents such as silica gel, zeolite, and aluminum oxide was evaluated toward the different terpene families present in olive leaves. Operating at 30 MPa and 60 °C, an adsorbent-assisted fractionation was carried out every 20 min for a total time of 120 min. For the first time, GC-QTOF-MS allowed the identification of 40 terpenoids in olive leaves. The GC-QTOF-MS results indicate that silica gel is a suitable adsorbent to partially retain polyunsaturated C10 and C15 terpenes. In addition, aluminum oxide increases C20 recoveries, whereas crystalline zeolites favor C30 terpenes recoveries. The different healthy properties that have been described for terpenoids makes the current SFE-GC-QTOF-MS process especially interesting and suitable for their revalorization.


2015 ◽  
Vol 1095 ◽  
pp. 341-344 ◽  
Author(s):  
Can Hui Xu ◽  
Guang Liang Zhang ◽  
Xin Zhou ◽  
Xi Lin Xiao ◽  
Chang Ming Nie ◽  
...  

The characterization of phosphoproteins requires highly specific methods for the separation and enrichment of phosphopeptides. Here we report a novel metal ion-immobilized solid phase material for the separation and enrichment of phosphopeptides. The material is uranyl-salophen-silica gel (USSG) particles in which salophen is a tetradentate ligand of uranyl ion. In USSG salophen is connected on the surface of silica gel and uranyl is bound on the surface through its coordination with salophen. Phosphopeptides can be selectively retained by USSG because uranyl-salophen can bind phosphate moiety with strong affinity and high selectivity. The new material USSG has been successfully used for the separation of phosphopeptides from peptide mixtures with the separation efficiency of 97.0% to 97.4%.


Author(s):  
P. A. Chernavskii ◽  
J.-A. Dalmon ◽  
N. S. Perov ◽  
A. Y. Khodakov

Sign in / Sign up

Export Citation Format

Share Document