Theoretical and experimental analysis of a simply designed solar retrofitting heating and cooling system

1991 ◽  
Vol 1 (3-4) ◽  
pp. 513-518 ◽  
Author(s):  
A.N. Ayoob ◽  
R.A. Attalage
Author(s):  
Mr. Swapnil B. Patond ◽  
◽  
Miss. Priti G. Bhadake ◽  
Mr. Chetan B. Patond

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


2021 ◽  
pp. 111122
Author(s):  
Michal Krajčík ◽  
Martin Šimko ◽  
Ondřej Šikula ◽  
Daniel Szabó ◽  
Dušan Petráš

2021 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Srinivasan Iyengar ◽  
Stephen Lee ◽  
David Irwin ◽  
Prashant Shenoy ◽  
Benjamin Weil

Buildings consume over 40% of the total energy in modern societies, and improving their energy efficiency can significantly reduce our energy footprint. In this article, we present WattScale, a data-driven approach to identify the least energy-efficient buildings from a large population of buildings in a city or a region. Unlike previous methods such as least-squares that use point estimates, WattScale uses Bayesian inference to capture the stochasticity in the daily energy usage by estimating the distribution of parameters that affect a building. Further, it compares them with similar homes in a given population. WattScale also incorporates a fault detection algorithm to identify the underlying causes of energy inefficiency. We validate our approach using ground truth data from different geographical locations, which showcases its applicability in various settings. WattScale has two execution modes—(i) individual and (ii) region-based, which we highlight using two case studies. For the individual execution mode, we present results from a city containing >10,000 buildings and show that more than half of the buildings are inefficient in one way or another indicating a significant potential from energy improvement measures. Additionally, we provide probable cause of inefficiency and find that 41%, 23.73%, and 0.51% homes have poor building envelope, heating, and cooling system faults, respectively. For the region-based execution mode, we show that WattScale can be extended to millions of homes in the U.S. due to the recent availability of representative energy datasets.


2018 ◽  
Vol 40 (2) ◽  
pp. 220-236 ◽  
Author(s):  
Irfan Ahmad Gondal

This study presents an innovative concept of a compact integrated solar-thermoelectric module that can form part of the building envelope. The heating/cooling modes use the photovoltaic electrical current to power the heat pump. The experimental analysis was carried out and the results of coefficient of performance were in the range 0.5–1 and 2.6–5 for cooling and heating functions, respectively. The study demonstrates that thermoelectric cooler can effectively be used for heating, ventilation, and air conditioning applications by integrating with solar panels especially in cooling applications. The system is environmentally friendly and can contribute in the implementation of zero energy buildings concept. Practical application: In order to help address the challenge of climate change and associated environmental effects, there is continuous demand for new technologies and applications that can be readily integrated into day-to-day life as a means of reducing anthropogenic impact. Heating, ventilation, and air conditioning, as one of the largest energy consumers in buildings, is the focus of many researchers seeking to reduce building energy use and environmental impact. This article proposes using facades and windows that have an integrated modules of solar photovoltaic cells and thermoelectric devices that are able to work together to achieve heating and cooling effects as required by the building without requiring any external operational power.


Sign in / Sign up

Export Citation Format

Share Document