Subversion of intracellular signal transduction by Herpes simplex virus type 1

1995 ◽  
Vol 5 (3) ◽  
pp. 327-334 ◽  
Author(s):  
William P. Halford ◽  
Daniel J.J. Carr
1999 ◽  
Vol 73 (10) ◽  
pp. 8415-8426 ◽  
Author(s):  
T. I. McLean ◽  
S. L. Bachenheimer

ABSTRACT Signal transduction pathways convey signals generated at the cell surface into the cell nucleus in order to initiate a program of gene expression that is characteristic for particular stimuli. Here we present evidence that infection by herpes simplex virus type 1 activated the two terminal kinases, cJUN N-terminal kinase (JNK) and p38, of stress-activated signal transduction kinase cascades. By using a solid-phase kinase assay, a phospho-specific antibody, and extracts prepared from a variety of infected cell types, we determined that activation of both kinases began 3 to 4 h postinfection (p.i.) and remained elevated out to 14 h p.i. Through the use of UV-irradiated or antibody-neutralized wild-type virus and the temperature-sensitive mutant tsB7, the high level of JNK activation was shown to be dependent on viral gene expression. Activation of JNK following infection by vi13, an ICP4 mutant virus that does not express early or late genes, suggested that only virus entry and immediate-early gene expression were necessary for JNK activation. The activation of JNK and p38 correlated with increased chloramphenicol acetyltransferase (CAT) activity in reporter assays dependent upon the activity of cJUN and ATF2trans-activation domains. Increased CAT activity dependent on TRE and CRE promoter sites was also observed in response to herpes simplex virus infection. The activities of ERK and ERK-dependent transcription factors were unchanged or depressed following infection, showing that activation of JNK and p38 was a specific event. Finally, the activation of JNK was important for the efficiency of viral replication. The yield of virus in NIH 3T3 cells stably expressing JIP-1, an inhibitor of JNK translocation to the nucleus, was reduced 70% compared to that of control cells, in single-step growth experiments.


2001 ◽  
Vol 120 (5) ◽  
pp. A136-A137
Author(s):  
K TSAMAKIDES ◽  
E PANOTOPOULOU ◽  
D DIMITROULOPOULOS ◽  
M CHRISTOPOULO ◽  
D XINOPOULOS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document