Soil organic matter and NPK status as influenced by integrated use of green manure, crop residues, cane trash and urea N in sugarcane-based crop sequences

1995 ◽  
Vol 54 (2) ◽  
pp. 93-98 ◽  
Author(s):  
R.L. Yadav
1971 ◽  
Vol 51 (2) ◽  
pp. 235-241 ◽  
Author(s):  
G. S. EMMOND

Soil aggregation was lowest in a fallow-wheat rotation and increased in other fallow-grain rotations with the second, third, and fourth crops after the fallow year. The best aggregation was under continuous wheat. Rotations containing hay crops, particularly those with grass, increased soil aggregation significantly. The influence of tillage treatments on soil aggregation declined with increased depth. Various tillage treatments affected surface soil aggregation, in the following order: green manure crop plowed under > cultivated with trash cover > crop residues plowed under > cultivated with residues burned off = crop residues disced in. Fertilizer (11–48–0) applied to the wheat crop of the various tillage treatments increased soil aggregation except where the crop residues had been removed. The application of barn manure increased soil aggregation.


2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


Perspektif ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Djajadi Djajadi

<p class="Default">ABSTRACT</p><p class="Default">Organik matter has an important role in determining soil health of sugarcane, i.e. soil capacity to support sugarcane to produce sustainable high yield. Soil organic matter influences soil physical, chemical, and biological properties, so that a consequence of declining soil organic matter is poorer soil fertility and lower yield. This paper has an objective to elucidate the important role of organic matter on sustainable farming of sugarcane. The important role of organic matter in soil fertility has been known for a long time before Green Revolution concept was introduced. With more intensity in sugarcane farming and more increasing of sugar demand, application of organic fertilizer started to be substituted by chemical fertilizer. Using green manure and/or biofertilizer has a chance to be spread out to the farmers due to more practical and more efficient than solid organik fertilizer, such as dung manure or compost. Future research should be focusing on the efectivity of green manure and or biofertilzer sources in improving soil fertility and cane yield, minimizing soil pathogen, reducing soil erosion of sugar cane land monoculture, and improving awareness of farmers about soil degradation as consequences of sugarcane monoculture planting for years.</p><p class="Default">Keywords: Organic matter, sugarcane, soil health sustainable farming</p><p class="Default"> </p><p class="Default"><strong>Bahan Organik: Peranannya dalam Budidaya Tebu Berkelanjutan</strong></p><p class="Default">ABSTRAK</p><p class="Default">Bahan organik tanah berperan penting dalam menentukan kesehatan tanah tebu, yaitu kapasitas tanah yang dapat mendukung produksi tebu yang tinggi secara berkelanjutan. Kadar bahan organik tanah mempengaruhi sifat fisik, kimia dan biologi tanah. Paper ini bertujuan untuk menguraikan tentang peranan bahan organik dalam memperbaiki sifat fisik, kimia dan biologi tanah pertanaman tebu. Pentingnya peran bahan oganik tersebut sudah disadari dari dulu, sehingga sebelum revolusi hijau penggunaan pupuk organik sudah umum dilakukan petani. Dengan semakin intensifnya budidaya tebu dan semakin meningkatnya kebutuhan gula, pemanfaatan pupuk organik sudah jarang dilakukan. Diperlukan usaha untuk meningkatkan dan mempertahankan kadar bahan organik pada lahan tebu, antara lain berupa gerakan masal dalam bentuk gerakan nasional melalui program aplikasi bahan organik. Pemanfaatan pupuk hijau dan/atau pupuk hayati berpeluang untuk diterapkan karena lebih praktis dan efisien daripada penambahan pupuk organik padat. Penelitian ke depan perlu difokuskan untuk mengkaji jenis-jenis pupuk organik dan pupuk hayati yang efektif memperbaiki kesuburan, dalam menekan serangan penyakit, meminimalkan erosi pada lahan-lahan tebu monokultur, dan meningkatkan kesadaran petani tebu tentang terjadinya degradasi lahan akibat penanaman tebu yang terus menerus.</p><p class="Default">Kata kunci: Bahan organik, tebu, kesehatan tanah, budidaya berkelanjutan</p><p class="Default"> </p>


1991 ◽  
Vol 71 (3) ◽  
pp. 377-387 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
K. E. Bowren ◽  
L. Townley-Smith ◽  
M. Schnitzer

The effects of crop rotation and various cultural practices on soil organic matter and some biochemical characteristics of a heavy-textured, Orthic Black Chernozem with a thick A horizon were determined after 31 yr at Melfort, Saskatchewan. Treatments investigated included: fertilization, cropping frequency, green manuring, and inclusion of grass-legume hay crops in predominantly spring wheat (Triticum aestivum L.) systems. The results showed that neither soil organic C nor N in the top 15 cm of soil, nor hydrolyzable amino acids, nor C mineralized in 14 d at 20 °C were influenced by fertilization. However, the relative molar distribution (RMD) of the amino acids reflected the influence of fertilization and the phase (Rot-yr) of the legume green manure rotation sampled. Some characteristics assessed increased marginally with increasing cropping frequency but differences were less marked than results obtained earlier in a heavy-textured Black Chernozem with a thin A horizon at Indian Head, Saskatchewan. The relationship between soil organic matter or C mineralization versus estimated crop residues, residue C, or residue N returned to the land over the 31-yr period, were not significant in the Melfort soil. This contrasts with our findings for the thin Black soil. We speculate that the lack of soil organic matter response in the Melfort soil was due to its very high organic matter content (about 64 t ha−1C and 6.5 t ha−1N in the top 15 cm). We also hypothesized that the amino acid RMD results, which differed from most of those reported in the literature, may be reflecting the more recent cropping history of the soil. This aspect requires further research into the composition and distribution of the humic materials in this soil. Key words: Amino acids, relative molar distribution, C respiration, green manures, fertilization


Sign in / Sign up

Export Citation Format

Share Document