The bilayer couple hypothesis

1992 ◽  
Vol 2 (3) ◽  
pp. 69-70 ◽  
Author(s):  
S.J. Singer ◽  
G.F. Oster
Keyword(s):  
1976 ◽  
Vol 70 (1) ◽  
pp. 247-251 ◽  
Author(s):  
M P Sheetz ◽  
S J Singer

We have previously proposed that if the two half-layers of a membrane are different in their protein and lipid compositions, they may respond differently to some membrane perturbation (the bilayer couple hypothesis). This hypothesis has been applied to explain the changes in shape of human erythrocytes that are produced by a variety of amphipathic compounds. These compounds are presumed to intercalate by their hydrophobic ends into the lipid portions of the membrane; if the compounds are anions, the binding is preferentially to the outer half of the bilayer, if cations, to the inner half. It is proposed that such preferential binding causes an expansion of one half-layer relative to the other, with a corresponding change in cell shape. The predicted sidedness of these shape changes is now demonstrated in experiments with methochlorpromazine and 2,4,6-trinitrophenol. Under appropriate nonequilibrium or equilibrium or equilibrium conditions, both of these compounds are shown to be either crenators or cup-formers of the intact erythrocyte, depending upon which side of the membrane they are concentrated in. These results therefore strongly support the bilayer couple hypothesis.


1986 ◽  
Vol 80 (1) ◽  
pp. 281-298
Author(s):  
L. Backman

When the human red cell consumes its ATP, the cell loses its discoid character in favour of a spiculated and eventually a spherical form. This discocyte-echinocyte transformation parallels both degradation of phosphatidylinositol 4,5-bisphosphate and phosphatidic acid but not dephosphorylation of cytoskeletal proteins. Dephosphorylation of both spectrin and band 3 lags behind metabolic crenation. Exogenous vanadate accelerates both shape changes and lipid dephosphorylation in a parallel manner during metabolic depletion. In contrast to its effect on lipids, vanadate reduces the rate of protein dephosphorylation. These observations strongly support a shape control mechanism in the red cell, based on phosphoinositide metabolism and compatible with a bilayer-couple model.


mBio ◽  
2012 ◽  
Vol 3 (2) ◽  
Author(s):  
Jeffrey W. Schertzer ◽  
Marvin Whiteley

ABSTRACTGram-negative bacteria naturally produce outer membrane vesicles (OMVs) that arise through bulging and pinching off of the outer membrane. OMVs have several biological functions for bacteria, most notably as trafficking vehicles for toxins, antimicrobials, and signaling molecules. While their biological roles are now appreciated, the mechanism of OMV formation has not been fully elucidated. We recently demonstrated that the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (PQS) is required for OMV biogenesis inP. aeruginosa. We hypothesized that PQS stimulates OMV formation through direct interaction with the outer leaflet of the outer membrane. To test this hypothesis, we employed a red blood cell (RBC) model that has been used extensively to study small-molecule–membrane interactions. Our results revealed that addition of PQS to RBCs induced membrane curvature, resulting in the formation of membrane spicules (spikes), consistent with small molecules that are inserted stably into the outer leaflet of the membrane. Radiotracer experiments demonstrated that sufficient PQS was inserted into the membrane to account for this curvature and that curvature induction was specific to PQS structure. These data suggest that a low rate of interleaflet flip-flop forces PQS to accumulate in and expand the outer leaflet relative to the inner leaflet, thus inducing membrane curvature. In support of PQS-mediated outer leaflet expansion, the PQS effect was antagonized by chlorpromazine, a molecule known to be preferentially inserted into the inner leaflet. Based on these data, we propose a bilayer-couple model to describeP. aeruginosaOMV biogenesis and suggest that this is a general mechanism for bacterial OMV formation.IMPORTANCEDespite the ubiquity and importance of outer membrane vesicle (OMV) production in Gram-negative bacteria, the molecular details of OMV biogenesis are not fully understood. Early experiments showed that 2-heptyl-3-hydroxy-4-quinolone (PQS) induces OMV formation through physical interaction with the membrane but did not elucidate the mechanism. The present study demonstrates that PQS specifically and reversibly promotes blebbing of model membranes dependent upon the same properties that are required for OMV formation inP. aeruginosa. These results are consistent with a mechanism where expansion of the outer leaflet relative to the inner leaflet induces localized membrane curvature. This “bilayer-couple” model can account for OMV formation under all conditions and is easily generalized to other Gram-negative bacteria. The model therefore raises the possibility of a universal paradigm for vesicle production in prokaryotes with features strikingly different from what is known in eukaryotes.


1976 ◽  
Vol 70 (1) ◽  
pp. 193-203 ◽  
Author(s):  
M P Sheetz ◽  
R G Painter ◽  
S J Singer

We have previously proposed the hypothesis that asymmetric membranes behave like bilayer couples: the two layers of the bilayer membrane can respond differently to a particular perturbation. Such a perturbation, for example, can result in the expansion of one layer relative to the other, thereby producing a curvature of that membrane. In experiments with erythrocytes and lymphocytes, we now demonstrate that different membrane perturbations which have opposite effects on membrane curvature can compensate and neutralize one another, as expected from the bilayer couple hypothesis. This provides a rational basis, for example, for understanding the effects of amphipathic drugs on a variety of cellular phenomena which involve shape changes of membranes.


1998 ◽  
Vol 53 (3-4) ◽  
pp. 182-190 ◽  
Author(s):  
M. Suwalsky ◽  
P. Hernández ◽  
F. Villena ◽  
F. Aguilar ◽  
C. P. Sotomayor

Abstract Tamoxifen, Anticancer Drug, Erythrocyte Membrane, Phospholipid Bilayer Tamoxifen is a non steroidal antiestrogen drug extensively used in the prevention and treatment of hormone-dependent breast cancer. To evaluate its perturbing effect upon cell membranes it was made to interact with human erythrocytes and molecular models. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphospha-tidylethanolamine (DMPE), representative of phospholipids classes located in the outer and inner leaflets of the erythrocyte membrane, respectively. Experiments by fluorescence spectroscopy showed that tamoxifen interacted with DMPC vesicles fluidizing both its polar head and acyl chain regions. These results were confirmed by X-ray diffraction which indi­ cated that tamoxifen perturbed the same regions of the lipid. However, it did not cause any significant structural perturbation to DMPE bilayers. The examination by electron micro­ scopy of human erythrocytes incubated with tamoxifen revealed that they changed their normal discoid shape to stomatocytes. According to the bilayer couple hypothesis, this result means that the drug is inserted in the inner leaflet of the erythrocyte membrane. Given the fact that tamoxifen did not interact with DMPE, it is concluded that it interacted with a protein located in the cytoplasmic moiety of the erythrocyte membrane.


1979 ◽  
Vol 265 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Walter B. Shelley ◽  
Lennart Juhlin
Keyword(s):  

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Catalina Florez ◽  
Julie E. Raab ◽  
Adam C. Cooke ◽  
Jeffrey W. Schertzer

ABSTRACT The Pseudomonas quinolone signal (PQS) is an important quorum-sensing molecule in Pseudomonas aeruginosa that also mediates its own packaging and transport by stimulating outer membrane vesicle (OMV) formation. Because OMVs have been implicated in many virulence-associated behaviors, it is critical that we understand how they are formed. Our group proposed the bilayer-couple model for OMV biogenesis, where PQS intercalates into the outer membrane, causing expansion of the outer leaflet and consequently inducing curvature. In accordance with the model, we hypothesized that PQS must be transported from the cytoplasm to the outer membrane before it can initiate OMV formation. We initially examined two laboratory strains of P. aeruginosa and found significant strain-dependent differences. PQS export correlated strongly with OMV production, even though equivalent amounts of total PQS were produced by both strains. Interestingly, we discovered that poor OMV producers sequestered the majority of PQS in the inner membrane, which appeared to be the result of early saturation of the export pathway. Further analysis showed that strain-specific PQS export and OMV biogenesis patterns were stable once established but could be significantly altered by changing the growth medium. Finally, we demonstrated that the associations described for laboratory strains also held for three clinical strains. These results suggest that factors controlling the export of PQS dictate OMV biogenesis. This work provides new insight into PQS-controlled virulence in P. aeruginosa and provides important tools to further study signal export and OMV biogenesis. IMPORTANCE Bacterial secretion has been recognized as an essential facet of microbial pathogenesis and human disease. Numerous virulence factors have been found to be transported within outer membrane vesicles (OMVs), and delivery using these biological nanoparticles often results in increased potency. OMV biogenesis is an important but poorly understood process that is ubiquitous among Gram-negative organisms. Our group seeks to understand the biochemical mechanisms behind the formation of OMVs and has developed a model of small-molecule-induced membrane curvature as an important driver of this process. With this work, we demonstrate that PQS, a known small-molecule OMV inducer, must be exported to promote OMV biogenesis in both lab-adapted and clinical strains of Pseudomonas aeruginosa. In supporting and expanding the bilayer-couple model of OMV biogenesis, the current work lays the groundwork for studying environmental and genetic factors that modulate OMV production and, consequently, the packaging and delivery of many bacterial factors. IMPORTANCE Bacterial secretion has been recognized as an essential facet of microbial pathogenesis and human disease. Numerous virulence factors have been found to be transported within outer membrane vesicles (OMVs), and delivery using these biological nanoparticles often results in increased potency. OMV biogenesis is an important but poorly understood process that is ubiquitous among Gram-negative organisms. Our group seeks to understand the biochemical mechanisms behind the formation of OMVs and has developed a model of small-molecule-induced membrane curvature as an important driver of this process. With this work, we demonstrate that PQS, a known small-molecule OMV inducer, must be exported to promote OMV biogenesis in both lab-adapted and clinical strains of Pseudomonas aeruginosa. In supporting and expanding the bilayer-couple model of OMV biogenesis, the current work lays the groundwork for studying environmental and genetic factors that modulate OMV production and, consequently, the packaging and delivery of many bacterial factors.


Sign in / Sign up

Export Citation Format

Share Document