Breaks in the syncytial trophoblast layer of human placental villi are due to apoptosis.

1996 ◽  
Vol 3 (2) ◽  
pp. 228A ◽  
Author(s):  
D NELSON
1978 ◽  
Vol 76 (2) ◽  
pp. 400-417 ◽  
Author(s):  
D M Nelson ◽  
A C Enders ◽  
B F King

Electron microscope autoradiography has been used to study protein synthesis in syncytial and cellular trophoblast of term human placental villi incubated in vitro with tritiated leucine ([3H]leu). Autoradiographs were analyzed using the hypothetical grain analysis of Blackett and Parry (1973. J. Cell Biol. 57:9-15). The results of this study demonstrated that both cellular and syncytial trophoblast have marked capacities for protein synthesis. Cellular trophoblast synthesized protein in both its rough endoplasmic reticulum (RER) and its ground plasm which contained abundant free ribosomes. The vast majority of 3H-proteins remained within the cell, with some of the proteins synthesized ultimately appearing in the nucleus. A small percentage of grains was ultimately associated with the trophoblast basement membrane. In syncytial trophoblast, the RER was the dominant site for protein synthesis. The autoradiographic data suggested that, as in the cellular trophoblast, the vast majority of 3H-proteins synthesized by the syncytial trophoblast remained within the syncytial trophoblast throughout the incubation period. The major portion of [3H]leu-labeling present in the syncytial trophoblast of villi incubated the longest times (4 h+) remained in association with the RER. Labeled proteins did not become concentrated in syncytial trophoblast Golgi apparatus, vesicles, or granules. In contrast to cellular trophoblast, the nuclei in the syncytium did not contain 3H-proteins at any time-point studied.


1978 ◽  
Vol 76 (2) ◽  
pp. 418-429 ◽  
Author(s):  
D M Nelson ◽  
A C Enders ◽  
B F King

Electron microscope autoradiography was used to study glycoprotein synthesis in cellular trophoblast (cytotrophoblast) and syncytial trophoblast of term human placental villi incubated in vitro with D-[1-3H]galactose ([3H]gal). Autoradiographs were analyzed using the hypothetical grain analysis of Blackett and Parry (1973. J. Cell Biol. 57:9-15). The results of this study indicated that [3H]gal incorporation into term placental villi was predominantly localized to cytotrophoblast. Utilization of [3H]gal by term syncytial trophoblast was extremely low and yielded too few grains for a quantitative grain analysis. This result is in striking contrast to that found in the preceding study of [3H]leucine incorporation (Nelson, D. M., A. C. Enders, and B. F. King. 1978). Within cytotrophoblast, the rough endoplasmic reticulum incorporated the most [3H]gal into glycoprotein. The Golgi apparatus was another site of [3H]gal incorporation. The vast majority of the [3H]gal incorporated into cytotrophoblast during the pulse incubation remained intracellular through the duration of the experiment. There was little autoradiographic evidence for secretion of tritiated macromolecules. Cytotrophoblast incubated for the longest time period studied (4 h+) showed a substantial concentration of tritiated macromolecules in the Golgi complex and in the ground plasm but not in the rough endoplasmic reticulum.


Author(s):  
A. C. Enders

The alteration in membrane relationships seen at implantation include 1) interaction between cytotrophoblast cells to form syncytial trophoblast and addition to the syncytium by subsequent fusion of cytotrophoblast cells, 2) formation of a wide variety of functional complex relationships by trophoblast with uterine epithelial cells in the process of invasion of the endometrium, and 3) in the case of the rabbit, fusion of some uterine epithelial cells with the trophoblast.Formation of syncytium is apparently a membrane fusion phenomenon in which rapid confluence of cytoplasm often results in isolation of residual membrane within masses of syncytial trophoblast. Often the last areas of membrane to disappear are those including a desmosome where the cell membranes are apparently held apart from fusion.


1978 ◽  
Vol 39 (03) ◽  
pp. 751-758 ◽  
Author(s):  
B L Sheppard ◽  
J Bonnar

SummaryThe fibrinolytic activity of the intimal cells of decidual spiral arteries and the syncytium of placental villi was studied by electron microscopy in ten normal full-term human pregnancies using a modification of the fibrin slide technique. Endothelial cells lining the intima of the decidual spiral arteries showed a considerably greater fibrinolytic activity than intimal cytotrophoblast and the syncytiotrophoblast showed no activity.The replacement of endothelial cells by an intimal lining of cytotrophoblast, and the presence of cytotrophoblast in the media, appears to play an important role in the reduction of the fibrinolytic activity of the vessel. This inhibition of fibrinolytic activity in the utero-placental arteries may be the physiological mechanism which controls fibrin deposition in these vessels and on the placental villi.


immuneACCESS ◽  
2020 ◽  
Author(s):  
EAL Enninga ◽  
P Raber ◽  
RA Quinton ◽  
R Ruano ◽  
N Ikumi ◽  
...  

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Christopher T Banek ◽  
Haley E Gillham ◽  
Sarah M Johnson ◽  
Hans C Dreyer ◽  
Jeffrey S Gilbert

Preeclampsia, defined by the onset of de novo hypertension and proteinuria near the 20th week of gestation, is a major contributor to maternal and fetal morbidity and mortality worldwide. Preeclampsia is often preceded by placental ischemia and an imbalance in circulating angiogenic factors (e.g. VEGF - vascular endothelial growth factor, sFlt-1 - soluble VEGF receptor 1). Recent studies also report increased expression of endoplasmic reticulum (ER) stress products in preeclamptic placentas. Our laboratory recently reported 5-aminoimidazole-4-carboxamide-3-ribonuceloside (AICAR) reduces blood pressure and improves angiogenic balance (increased VEGF, decreased sFlt-1) in rats with placental ischemia-induced hypertension, but the mechanism is unclear. We hypothesized AICAR would decrease sFlt-1, increase AMPK phosphorylation, and decrease ER stress in hypoxic placental villous explants. On day 19 of pregnancy, placentas were isolated from four Sprague-Dawley rats and immediately dissected in ice-cold phosphate-buffered saline. Explants were cultured for 12 hours in physiologic normoxic (8% O2) and hypoxic (1.5% O2) conditions. All experiments were performed in triplicate. VEGF secretion was unaffected by AICAR treatment in both normoxic and hypoxic conditions. AICAR decreased sFlt -1 secretion in hypoxic villi (2147±116 vs. *1411±67, P<0.05). Additionally, AMPK activation ratio was increased with AICAR, and was hypoxic-dependent (8%: 2.9±0.3; 8%+A: 3.3±0.1; 1.5%: 3.5±0.1; 1.5%+A: *4.5±0.01;*P<.05). Moreover, markers of ER stress were increased with hypoxia, and decreased with AICAR treatment (BiP 8%: 1.2±0.2; 8%+A: 1.0±0.0; 1.5%: *8.3±0.7; 1.5%+A: 1.9±0.0.3;*P<.05), (CHOP 8%: 0.5±0.0; 8%+A: 0.3±0.1; 1.5%: *1.7±0.1; 1.5%+A: 0.7±0.1;*P<.05). ATF4 was not changed with hypoxia or AICAR treatment. The present data show that AICAR stimulates AMPK phosphorylation and decreases ER stress response proteins in hypoxic placental villi. Further, the present data support the hypothesis that AICAR restores angiogenic balance by decreasing sFlt-1 rather than increasing VEGF secretion from placental villi. These findings suggest AICAR may improve placental function during pregnancies complicated by placental-ischemia.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Eiko Kawamura ◽  
Gina B. Hamilton ◽  
Ewa I. Miskiewicz ◽  
Daniel J. MacPhee

Sign in / Sign up

Export Citation Format

Share Document