Modeling of metal matrix composites by a self-consistent embedded cell model

1996 ◽  
Vol 44 (6) ◽  
pp. 2465-2478 ◽  
Author(s):  
M. Dong ◽  
S. Schmauder
2002 ◽  
Vol 124 (2) ◽  
pp. 167-173 ◽  
Author(s):  
D-M. Duan ◽  
N. Q. Wu ◽  
M. Zhao ◽  
W. S. Slaughter ◽  
Scott X. Mao

This paper deals with an analysis of the size effect on the flow strength of metal-matrix composites due to the presence of geometrically necessary dislocations. The work is based upon a cell model of uniaxial deformation. The deformation field is analyzed based on a requirement of the deformation compatibility along the interface between the particle and the matrix, which in turn is completed through introducing an array of geometrically necessary dislocations. The results of modelling show that the overall stress-strain relationship is dependent not only on the particle volume fraction but also on the particle size. It has been found that the material length scale in the strain gradient plasticity is dependent on the particle volume fraction, or in other words, on the relative ratio of the particle spacing to the particle size. The strain gradient is, besides the macro-strain and the particle volume fraction, inversely proportional to the particle size.


Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
P. K. Liaw

Aluminum-based metal matrix composites offer unique combinations of high specific strength and high stiffness. The improvement in strength and stiffness is related to the particulate reinforcement and the particular matrix alloy chosen. In this way, the metal matrix composite can be tailored for specific materials applications. The microstructural characterization of metal matrix composites is thus important in the development of these materials. In this study, the structure of a p/m 2014-SiC particulate metal matrix composite has been examined after extrusion and tensile deformation.Thin-foil specimens of the 2014-20 vol.% SiCp metal matrix composite were prepared by dimpling to approximately 35 μm prior to ion-milling using a Gatan Dual Ion Mill equipped with a cold stage. These samples were then examined in a Philips 400T TEM/STEM operated at 120 kV. Two material conditions were evaluated: after extrusion (80:1); and after tensile deformation at 250°C.


Sign in / Sign up

Export Citation Format

Share Document