BIOCHEMICAL AND ULTRASTRUCTURAL CORRELATES OF SUBSTRATE STIMULATION OF RENAL ORGANIC ANION TRANSPORT

Abstracts ◽  
1977 ◽  
pp. 252
Author(s):  
J.B. Hook ◽  
D.G. Pegg ◽  
J. Bernstein
1974 ◽  
Vol 23 (3) ◽  
pp. 754-758 ◽  
Author(s):  
Jenny T. Johnson ◽  
L. hannon^Holloway ◽  
S. Richard Heisey ◽  
Jerry B. Hook

1994 ◽  
Vol 299 (3) ◽  
pp. 665-670 ◽  
Author(s):  
G Fricker ◽  
V Dubost ◽  
K Finsterwald ◽  
J L Boyer

The substrate specificity for the transporter that mediates the hepatic uptake of organic anions in freshly isolated hepatocytes of the elasmobranch little skate (Raja erinacea) was determined for bile salts and bile alcohols. The Na(+)-independent transport system exhibits a substrate specificity, which is different from the specificity of Na(+)-dependent bile salt transport in mammals. Unconjugated and conjugated di- and tri-hydroxylated bile salts inhibit uptake of cholyltaurine and cholate competitively. Inhibition is significantly greater with unconjugated as opposed to glycine- or taurine-conjugated bile salts. However, the number of hydroxyl groups in the steroid moiety of the bile salts has only minor influences on the inhibition by the unconjugated bile salts. Since the transport system seems to represent an archaic organic-anion transport system, other anions, such as dicarboxylates, amino acids and sulphate, were also tested, but had no inhibitory effect on bile salt uptake. To clarify whether bile alcohols, the physiological solutes in skate bile, share this transport system, cholyltaurine transport was studied after addition of 5 beta-cholestane-3 beta,5 alpha,6 beta-triol, 5 alpha-cholestan-3 beta-ol and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. These bile alcohols inhibit cholyltaurine uptake non-competitively. In contrast, uptake of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol, which is Na(+)-independent, is not inhibited by cholyltaurine. The findings further characterize a Na(+)-independent organic-anion transport system in skate liver cells, which is not shared by bile alcohols and has preference for unconjugated lipophilic bile salts.


1991 ◽  
Vol 278 (3) ◽  
pp. 637-641 ◽  
Author(s):  
H Roelofsen ◽  
R Ottenhoff ◽  
R P J Oude Elferink ◽  
P L M Jansen

In order to investigate the regulation of canalicular organic-anion transport, we used a hepatocyte transport assay in which canalicular secretion of a model organic anion, dinitrophenyl-glutathione (GS-DNP), was measured in the presence of stimulators and inhibitors of the Ca2+/protein kinase C (PKC) second-messenger system and of the cyclic AMP (cAMP) second-messenger system. Vasopressin (24 nM) and the phorbol ester phorbol 12-myristate 13-acetate (1 microgram/ml), both stimulators of PKC, stimulated GS-DNP efflux by 65 +/- 36% and 55 +/- 28% respectively, whereas staurosporine (10 microM), an inhibitor of PKC, inhibited efflux by 53 +/- 13%. Glucagon and forskolin, both stimulators of the cAMP second-messenger system, as well as the cAMP analogue dibutyryl cAMP and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, did not significantly influence the GS-DNP efflux. It can be concluded that canalicular organic-anion transport in hepatocytes is either directly or indirectly regulated by PKC.


Sign in / Sign up

Export Citation Format

Share Document