FRICTIONAL INTERACTION DURING METAL-POLYMER CONTACT

Author(s):  
V.A. BELY ◽  
A.I. SVIRIDENOK ◽  
M.I. PETROKOVETS ◽  
V.G. SAVKIN
Author(s):  
N A Volchenko ◽  
P S Krasin ◽  
A I Volchenko ◽  
D Yu Zhuravlev

2018 ◽  
Vol 0 (4(81)) ◽  
Author(s):  
Александр Иванович Вольченко ◽  
Дмитрий Юрьевич Журавлев ◽  
Николай Васильевич Кашуба ◽  
Василий Степанович Витвицкий ◽  
Василий Михайлович Чуфус

1988 ◽  
Vol 49 (C5) ◽  
pp. C5-49-C5-59 ◽  
Author(s):  
P. S. HO ◽  
R. HAIGHT ◽  
R. C. WHITE ◽  
B. D. SILVERMAN

1986 ◽  
Vol 14 (1) ◽  
pp. 44-72 ◽  
Author(s):  
C. M. Mc C. Ettles

Abstract It is proposed that tire-pavement friction is controlled by thermal rather than by hysteresis and viscoelastic effects. A numerical model of heating effects in sliding is described in which the friction coefficient emerges as a dependent variable. The overall results of the model can be expressed in a closed form using Blok's flash temperature theory. This allows the factors controlling rubber friction to be recognized directly. The model can be applied in quantitative form to metal-polymer-ice contacts. Several examples of correlation are given. The difficulties of characterizing the contact conditions in tire-pavement friction reduce the model to qualitative form. Each of the governing parameters is examined in detail. The attainment of higher friction by small, discrete particles of aluminum filler is discussed.


2020 ◽  
Vol 86 (4) ◽  
pp. 61-65
Author(s):  
M. V. Abramchuk ◽  
R. V. Pechenko ◽  
K. A. Nuzhdin ◽  
V. M. Musalimov

A reciprocating friction machine Tribal-T intended for automated quality control of the rubbing surfaces of tribopairs is described. The distinctive feature of the machine consists in implementation of the forced relative motion due to the frictional interaction of the rubbing surfaces fixed on the drive and conjugate platforms. Continuous processing of the signals from displacement sensors is carried out under conditions of continuous recording of mutual displacements of loaded tribopairs using classical approaches of the theory of automatic control to identify the tribological characteristics. The machine provides consistent visual real time monitoring of the parameters. The MATLAB based computer technologies are actively used in data processing. The calculated tribological characteristics of materials, i.e., the dynamic friction coefficient, damping coefficient and measure of the surface roughness, are presented. The tests revealed that a Tribal-T reciprocating friction machine is effective for real-time study of the aforementioned tribological characteristics of materials and can be used for monitoring of the condition of tribo-nodes of machines and mechanisms.


2015 ◽  
Vol 84 (8) ◽  
pp. 591-595 ◽  
Author(s):  
Yukiko IZUMI ◽  
Naoki BADEN ◽  
Kazuhiro MATSUDA

Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 372 ◽  
Author(s):  
Jinjin Luan ◽  
Qing Wang ◽  
Xu Zheng ◽  
Yao Li ◽  
Ning Wang

To avoid conductive failure due to the cracks of the metal thin film under external loads for the wearable strain sensor, a stretchable metal/polymer composite film embedded with silver nanowires (AgNWs) was examined as a potential candidate. The combination of Ag film and AgNWs enabled the fabrication of a conductive film that was applied as a high sensitivity strain sensor, with gauge factors of 7.1 under the applied strain of 0–10% and 21.1 under the applied strain of 10–30%. Furthermore, the strain sensor was demonstrated to be highly reversible and remained stable after 1000 bending cycles. These results indicated that the AgNWs could act as elastic conductive bridges across cracks in the metal film to maintain high conductivity under tensile and bending loads. As such, the strain sensor engineered herein was successfully applied in the real-time detection and monitoring of large motions of joints and subtle motions of the mouth.


Sign in / Sign up

Export Citation Format

Share Document