viscoelastic effects
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 34)

H-INDEX

35
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yuxuan Huang ◽  
ethan hoppe ◽  
Iden Kurtaliaj ◽  
Victor Birman ◽  
Stavros Thomopoulos ◽  
...  

Tears to the rotator cuff often require surgical repair. These repairs often culminate in re-tearing when the sutures break through the tendon in the weeks following repair. Although numerous studies have been performed to identify suturing strategies that reduce this risk by balancing forces across sutures, none have accounted for how the viscoelastic nature of tendon influences load sharing. With the aim of providing insight into this problem, we studied howviscoelasticity, tendon stiffness, and spacing affect this balancing of forces across sutures. Results from a model of a three-row sutured re-attachment demonstrated that an optimized distribution of the stiffness and spacing of the sutures can balance the forces across sutures to within a few percent, even when accounting for tendon viscoelasticity. Non-optimized distributions resulted in concentrated force, typically in the outermost sutures. Results underscore the importance of accounting for viscoelastic effects in the design of tendon to bone repairs


2021 ◽  
Vol 8 (10) ◽  
pp. 145
Author(s):  
Silvia García-Vilana ◽  
David Sánchez-Molina ◽  
Jordi Llumà ◽  
Ignasi Galtés ◽  
Juan Velázquez-Ameijide ◽  
...  

Many previous studies on the mechanical properties of Parasagittal Bridging Veins (PSBVs) found that strain rate had a significant effect on some mechanical properties, but did not extensively study the viscoelastic effects, which are difficult to detect with uniaxial simple tensile tests. In this study, relaxation tests and tests under cyclic loading were performed, and it was found that PSBVs do indeed exhibit clear viscoelastic effects. In addition, a complete viscoelastic model for the PSBVs is proposed and data from relaxation, cyclic load and load-unload tests for triangular loads are used to find reference values that characterize the viscoelastic behavior of the PSBVs. Although such models have been proposed for other types of blood vessels, this is the first study that clearly demonstrates the existence of viscoelastic effects from an experimental point of view and also proposes a specific model to explain the data obtained. Finally, this study provides reference values for the usual viscoelastic properties, which would allow more accurate numerical simulation of PSBVs by means of computational models.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 831
Author(s):  
David Sánchez-Molina ◽  
Silvia García-Vilana ◽  
Jordi Llumà ◽  
Ignasi Galtés ◽  
Juan Velázquez-Ameijide ◽  
...  

The mechanical properties of the cerebral bridging veins (CBVs) were studied using advanced microtensile equipment. Detailed high-quality curves were obtained at different strain rates, showing a clearly nonlinear stress–strain response. In addition, the tissue of the CBVs exhibits stress relaxation and a preconditioning effect under cyclic loading, unequivocal indications of viscoelastic behavior. Interestingly, most previous literature that conducts uniaxial tensile tests had not found significant viscoelastic effects in CBVs, but the use of more sensitive tests allowed to observe the viscoelastic effects. For that reason, a careful mathematical analysis is presented, clarifying why in uniaxial tests with moderate strain rates, it is difficult to observe any viscoelastic effect. The analysis provides a theoretical explanation as to why many recent studies that investigated mechanical properties did not find a significant viscoelastic effect, even though in other circumstances, the CBV tissue would clearly exhibit viscoelastic behavior. Finally, this study provides reference values for the usual mechanical properties, as well as calculations of constitutive parameters for nonlinear elastic and viscoelastic models that would allow more accurate numerical simulation of CBVs in Finite Element-based computational models in future works.


Author(s):  
Kevin Linka ◽  
Nina Reiter ◽  
Jasmin Würges ◽  
Martin Schicht ◽  
Lars Bräuer ◽  
...  

The regional mechanical properties of brain tissue are not only key in the context of brain injury and its vulnerability towards mechanical loads, but also affect the behavior and functionality of brain cells. Due to the extremely soft nature of brain tissue, its mechanical characterization is challenging. The response to loading depends on length and time scales and is characterized by nonlinearity, compression-tension asymmetry, conditioning, and stress relaxation. In addition, the regional heterogeneity–both in mechanics and microstructure–complicates the comprehensive understanding of local tissue properties and its relation to the underlying microstructure. Here, we combine large-strain biomechanical tests with enzyme-linked immunosorbent assays (ELISA) and develop an extended type of constitutive artificial neural networks (CANNs) that can account for viscoelastic effects. We show that our viscoelastic constitutive artificial neural network is able to describe the tissue response in different brain regions and quantify the relevance of different cellular and extracellular components for time-independent (nonlinearity, compression-tension-asymmetry) and time-dependent (hysteresis, conditioning, stress relaxation) tissue mechanics, respectively. Our results suggest that the content of the extracellular matrix protein fibronectin is highly relevant for both the quasi-elastic behavior and viscoelastic effects of brain tissue. While the quasi-elastic response seems to be largely controlled by extracellular matrix proteins from the basement membrane, cellular components have a higher relevance for the viscoelastic response. Our findings advance our understanding of microstructure - mechanics relations in human brain tissue and are valuable to further advance predictive material models for finite element simulations or to design biomaterials for tissue engineering and 3D printing applications.


Computation ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 85
Author(s):  
Shubham Goswami ◽  
Arman Hemmati

The influence of viscoelastic polymer additives on response and recovery of turbulent pipeflow over square bar roughness elements was examined using Direct Numerical Simulations at a Reynolds number of 5×103. Two different bar heights for the square bar roughness elements were examined, h/D=0.05 and 0.1. A Finitely Extensible Non-linear Elastic-Peterlin (FENE-P) rheological model was employed for modeling viscoelastic fluid features. The rheological parameters for the simulation corresponded to a high concentration polymer of 160 ppm. Recirculation regions formed behind the bar elements by the viscoelastic fluid were shorter than those associated with Newtonian fluid, which was attributed to mixed effects of viscous and elastic forces due to the added polymers. The recovery of the mean viscoelastic flow was faster. The pressure losses on the surface of the roughness were larger compared to the Newtonian fluid, and the overall contribution to local drag was reduced due to viscoelastic effects.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2198
Author(s):  
Ricardo Diaz-Calleja ◽  
Damián Ginestar ◽  
Vícente Compañ Moreno ◽  
Pedro Llovera-Segovia ◽  
Clara Burgos-Simón ◽  
...  

Electroelastic materials, as for example, 3M VHB 4910, are attracting attention as actuators or generators in some developments and applications. This is due to their capacity of being deformed when submitted to an electric field. Some models of their actuation are available, but recently, viscoelastic models have been proposed to give an account of the dissipative behaviour of these materials. Their response to an external mechanical or electrical force field implies a relaxation process towards a new state of thermodynamic equilibrium, which can be described by a relaxation time. However, it is well known that viscoelastic and dielectric materials, as for example, polymers, exhibit a distribution of relaxation times instead of a single relaxation time. In the present approach, a continuous distribution of relaxation times is proposed via the introduction of fractional derivatives of the stress and strain, which gives a better account of the material behaviour. The application of fractional derivatives is described and a comparison with former results is made. Then, a double generalisation is carried out: the first one is referred to the viscoelastic or dielectric models and is addressed to obtain a nonsymmetric spectrum of relaxation times, and the second one is the adoption of the more realistic Mooney–Rivlin equation for the stress–strain relationship of the elastomeric material. A modified Mooney–Rivlin model for the free energy density of a hyperelastic material, VHB 4910 has been used based on experimental results of previous authors. This last proposal ensures the appearance of the bifurcation phenomena which is analysed for equibiaxial dead loads; time-dependent bifurcation phenomena are predicted by the extended Mooney–Rivlin equations.


2021 ◽  
Vol 919 ◽  
Author(s):  
X. Shao ◽  
P. Wilson ◽  
J.B. Bostwick ◽  
J.R. Saylor

Abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Louis William Rogowski ◽  
Jamel Ali ◽  
Xiao Zhang ◽  
James N. Wilking ◽  
Henry C. Fu ◽  
...  

AbstractMicroscale propulsion impacts a diverse array of fields ranging from biology and ecology to health applications, such as infection, fertility, drug delivery, and microsurgery. However, propulsion in such viscous drag-dominated fluid environments is highly constrained, with time-reversal and geometric symmetries ruling out entire classes of propulsion. Here, we report the spontaneous symmetry-breaking propulsion of rotating spherical microparticles within non-Newtonian fluids. While symmetry analysis suggests that propulsion is not possible along the fore-aft directions, we demonstrate the existence of two equal and opposite propulsion states along the sphere’s rotation axis. We propose and experimentally corroborate a propulsion mechanism for these spherical microparticles, the simplest microswimmers to date, arising from nonlinear viscoelastic effects in rotating flows similar to the rod-climbing effect. Similar possibilities of spontaneous symmetry-breaking could be used to circumvent other restrictions on propulsion, revising notions of microrobotic design and control, drug delivery, microscale pumping, and locomotion of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document