DETERMINATION OF THE MINIMUM FLUIDIZATION VELOCITY OF COARSE PARTICLES IN A CIRCULATING FLUIDIZED BED OF FINE PARTICLES

Author(s):  
Zhang Xudong ◽  
Yang Guilin
Author(s):  
Louis Edwards Cáceres-Martínez ◽  
Diana Carolina Guío-Pérez ◽  
Sonia Lucía Rincón-Prat

AbstractThe present study explores the relevance of the physical properties of biomass particles on the determination of the minimum fluidization velocity (Umf) of binary mixtures. Fluidization experiments were performed in a cold flow unit with diverse biomasses mixed with sand in different mass fractions. Gas velocity and pressure drop across the bed were used to determine Umf. Different correlations reported in the literature were evaluated on their ability to accurately predict Umf of the mixtures. Results showed satisfactory predictions when appropriately identifying correlations according to the corresponding Geldart groups for the biomass particles. This perspective opens new possibilities toward the generalization of correlation factors and helps in improving the accuracy of the prediction for highly heterogeneous mixtures. The methodology also allows the analysis of mixtures for which the experimental approach is difficult, such as those including char particle, with the only requirement of carefully measuring the physical properties of the particles.


2020 ◽  
pp. 127965
Author(s):  
Yanjiao Li ◽  
Chenyang Zhou ◽  
Guannan Lv ◽  
Yongxin Ren ◽  
Yuemin Zhao ◽  
...  

Author(s):  
David R. Escudero ◽  
Theodore J. Heindel

Characterizing the hydrodynamics of a fluidized bed is of vital importance to understand the behavior of these multiphase flow systems. Minimum fluidization velocity and gas holdup are two important factors used to understand the hydrodynamics of a fluidized bed. Experimental studies on the effects of bed height on the minimum fluidization velocity and gas holdup were carried out using a 10.2 cm diameter cylindrical fluidized bed filled with 500–600 μm glass beads. In this study, four different bed height-to-diameter ratios were used: H/D = 0.5, 1, 1.5, and 2. Minimum fluidization velocity was determined for each H/D ratio using pressure drop measurements. Local time-average gas holdup was determined using non-invasive X-ray computed tomography imaging. Results show that minimum fluidization velocity is not affected by the change in bed height, while local gas holdup does appear to be affected by the change in bed height.


POROS ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Asyari Daryus Daryus

The gas fluidization velocity or superficial gas velocity entering the fluidized bed will affect the fluidization in fluidized bed. If the superficial velocity is below the minimum fluidization velocity then there is no fluidization, and if it is more than it should be then the fluidization characteristic will be different. To obtain the effect of gas fluidization velocity to fluidization characteristics, it had been conducted the research on lab scale fluidized bed using CFD simulation method validated with the experiment data. The simulations used Gidaspow model for drag force and k-ε model for turbulent flow. From the experiments obtained that the minimum fluidization velocity was 0.4 m/s and the pressure drop was around 700 Pa. The simulation results for pressure drop across the bed were close to the experiment data for the gas fluidization velocity equal and bigger than the minimum fluidization velocity. For the velocity below the minimum fluidization velocity, there was the big differences between the simulation results and the experiment, so the simulation results cannot be used. For the fluidization velocity of 0.4 m/s and 0.45 m/s, fluidized bed showed the bubbling phenomena, and the higher velocity showed the bigger bubble. For the fluidization velocity of 0.50 m/s to 0.70 m/s, the fluidized bed showed the turbulent regime. In this regime, the bubble was breaking instead of growing and there was no clear bed surface observed. The simulation result for particle density showed that if the gas velocity was higher, the density of particles at the base of bed was decreasing since many of the particles was moving upwards. The particle density was lower in this regime than that of bubbling regime.


Sign in / Sign up

Export Citation Format

Share Document