char particle
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 32)

H-INDEX

19
(FIVE YEARS 4)

Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123129
Author(s):  
Yongbo Du ◽  
Chang'an Wang ◽  
Defu Che ◽  
Jonathan P. Mathews

2021 ◽  
pp. 1-24
Author(s):  
Imtenan Sayeed ◽  
Mahmud Arman Kibria ◽  
Sankar Bhattacharya

Abstract In a chemical looping combustion (CLC) system, gasification kinetics of char holds immense importance being the rate-limiting reaction in the fuel reactor. This paper studied the gasification kinetics of char derived from Victorian Brown Coal (VBC) in a fluidised bed reactor which mimics the fuel reactor conditions of a CLC process. Mass of char, char particle size and gas flow conditions were optimised to ensure the gasification reaction free from mass transfer limitations. Effect of oxygen carrier, hematite, being the bed material was also studied. The experiments were conducted in the temperature range of 800C-950C, which is a typical range for fuel reactor. The experimental results were modelled with the help of grain model (GM) and random pore model (RPM) to analyse the kinetic parameters. Activation energy was found to be around 177 kJ/mol in sand bed and 175.5 kJ/mol in the hematite bed. Reaction in hematite bed was found to be 42% faster on average compared to the reaction in a sand bed. Fastest total conversion of char took as low as 4.1 minutes in hematite bed at 950C. While catalytic effect of hematite was ruled out due to insignificant change in activation energy, it was concluded that increase in CO2 partial pressure at the vicinity of char particle enhanced the reaction rate in the case of hematite bed. This study has generated relevant information for the CLC of Victorian Brown Coal with hematite as the oxygen carrier.


2021 ◽  
Author(s):  
Toyin Omojola

<p></p><p>The combustion of coal in air, its gasification with carbon dioxide, and oxyfuel combustion in oxygen/carbon dioxide mixtures was studied at high process temperatures in a bubbling fluidised bed reactor where burning is controlled by external mass transfer conditions. Theoretical analysis of the burn-out times of an isothermal particle of coal char in air is provided for the case where a fraction of carbon monoxide is oxidized close to the char particle. Burn-out time equations are provided for the gasification of char in carbon dioxide. Both burn-out time equations are compared to analytical equations derived for the oxy-fuel combustion of char particles in oxygen/carbon dioxide mixtures. The results are particularly relevant for retrofitting existing bubbling fluidised bed reactors for sustainable energy generation to meet global warming targets. </p><p></p>


Fuel ◽  
2021 ◽  
Vol 291 ◽  
pp. 120229
Author(s):  
Zewu Zhang ◽  
Zhenghong Zhao ◽  
Fan Wu ◽  
Cong Luo ◽  
Xiaoshan Li ◽  
...  

2021 ◽  
Author(s):  
Toyin Omojola

<p>Coal combustion in air, gasification with carbon dioxide and oxyfuel combustion in oxygen/carbon dioxide mixtures was studied at high process temperatures in a bubbling fluidised bed reactor where burning is controlled by external mass transfer conditions is considered. Theoretical analysis of the burn-out times of an isothermal particle of coal char in air is provided for the case where a fraction of carbon monoxide is oxidized close to the char particle. Burn-out time equations are provided for the gasification of char in carbon dioxide. Both burn-out time equations are compared to analytical equations derived for the oxy-fuel combustion of char particles in oxygen/carbon dioxide mixtures. </p>


2021 ◽  
Author(s):  
Toyin Omojola

<p>Coal combustion in air, gasification with carbon dioxide and oxyfuel combustion in oxygen/carbon dioxide mixtures was studied at high process temperatures in a bubbling fluidised bed reactor where burning is controlled by external mass transfer conditions. Theoretical analysis of the burn-out times of an isothermal particle of coal char in air is provided for the case where a fraction of carbon monoxide is oxidized close to the char particle. Burn-out time equations are provided for the gasification of char in carbon dioxide. Both burn-out time equations are compared to analytical equations derived for the oxy-fuel combustion of char particles in oxygen/carbon dioxide mixtures. </p>


Fuel ◽  
2021 ◽  
Vol 287 ◽  
pp. 119738
Author(s):  
Ahmed Hassan ◽  
Taraneh Sayadi ◽  
Vincent Le Chenadec ◽  
Antonio Attili

Sign in / Sign up

Export Citation Format

Share Document