An Advanced Finite Element Model of the Flat, Cold Rolling Process

2014 ◽  
pp. 113-123 ◽  
Author(s):  
John G. Lenard
2014 ◽  
Vol 1061-1062 ◽  
pp. 515-521 ◽  
Author(s):  
Abdulrahman Aljabri ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei

Cold rolled thin strip has received a great deal of attention through technological and theoretical progress in the rolling process, as well as from researchers who have focused on some essential parameters of strip such as its shape and profile. This paper describes the development of a 3-D finite element model of the shape of thin strip during cold rolling to simulate the cold rolling of WCS (work roll crossing and shifting) in asymmetric rolling. This finite element model considers the asymmetrical rolling parameters such as variations in the diameters of the rolls and the crossing angle as the work roll shifts on the strip during cold rolling. The shape and profile of the strip are discussed in the asymmetrical and symmetrical rolling conditions, while the total rolling force and distribution of stress are discussed in the case where the roll cross angle and axial shifting roll changes. The results can then be used to control the shape and profile of thin strip during rolling.


2020 ◽  
Author(s):  
Zhu-Wen Yan ◽  
Bao-Sheng Wang ◽  
He-Nan Bu ◽  
Hao Li ◽  
Lei Hong ◽  
...  

Abstract Through taking the cold rolling process as the research object, the three-dimensional finite element model of the strip rolling process is established by using ANSYS/LS-DYNA software. The simulation results of the finite element model have a good fit with the actual production data. The rolling process is dynamically simulated, and the distribution curves of important rolling parameters such as equivalent stress, control efficiency coefficient, transverse rolling pressure, lateral thickness and work roll deflection is obtained. The research results of this paper have strong practicability for the process control of cold strip rolling mill. The research results have certain guiding significance for the development and optimization of the rolling control system.


2011 ◽  
Vol 103 ◽  
pp. 488-492
Author(s):  
Guang Bin Wang ◽  
Xian Qiong Zhao ◽  
Yi Lun Liu

In the rolling process, deviation is the phenomenon that the strap width direction's centerline deviates from rolling system setting centerline,serious deviation will cause product quality drop and rolling equipment fault. This paper has established the finite element model to the hot tandem rolling aluminum strap, analyzed the strap’s deviation rule under four kinds of incentives,obtained the neural network predictive model and the control policy of the tail deviation.The result to analyze a set of fact deviation data shows this method may control tail deviation in preconcerted permission range.


1992 ◽  
Vol 34 (3) ◽  
pp. 195-210 ◽  
Author(s):  
P. Gratacos ◽  
P. Montmitonnet ◽  
C. Fromholz ◽  
J.L. Chenot

2010 ◽  
Vol 654-656 ◽  
pp. 206-209
Author(s):  
Zheng Yi Jiang ◽  
Xiao Zhong Du ◽  
Yan Bing Du ◽  
Dong Bin Wei ◽  
Xiao Feng He

The demand of thin gauge strip with good quality such as the strip shape and surface finish is significantly increasing. In this study, finite element model of the strip shape during cold rolling of thin strip in asymmetrical rolling was developed, and the finite element simulation of the thin strip shape has been carried out in LS-DYNA. The effects of reduction and speed ratio on the strip shape and profile and the strip edge drop have been obtained. The developed finite element model has been verified with the experimental data. The obtained results are applicable to the control of the rolled thin strip shape in rolling practice.


2010 ◽  
Vol 97-101 ◽  
pp. 81-84 ◽  
Author(s):  
Zheng Yi Jiang ◽  
Xiao Zhong Du ◽  
Yan Bing Du ◽  
Dong Bin Wei ◽  
Matthew Hay

Strip shape control during cold rolling of thin strip is a challenge in rolling practice. In the paper, finite element model of strip shape during cold rolling of thin strip in asymmetrical rolling case was successfully developed, and the strip shape such as the thickness distribution along the strip width have been obtained. The developed finite element model has been verified with the experimental value, which shows they are in good agreement. The obtained results are applicable to control the rolled thin strip shape in practice.


Sign in / Sign up

Export Citation Format

Share Document