scholarly journals Deformable Surfaces using Physically Based Particle Systems

1995 ◽  
pp. 205-215 ◽  
Author(s):  
Yi Wu ◽  
Daniel Thalmann ◽  
Nadia Magnenat Thalmann
2004 ◽  
Vol 4 (2) ◽  
pp. 140-149 ◽  
Author(s):  
Zolta´n Rusa´k

To be able to model industrial products in conceptual design, aspects such as function, structure, shape, behavior, sustainability and service are typically considered. Tools developed until now usually focus on individual aspects. The author proposes a new modeling approach called vague discrete interval modeling (VDIM) that integrates shape, structure and behavior modeling. The integration is achieved by the introduction of a multipurpose modeling entity called particle. VDIM offers three means for the representation of a cluster of shapes, for instances of shapes and for physically-based manipulation of shapes. Interval modeling allows representing uncertainty of shapes, which is a characteristic property in shape conceptualization. In addition, particle systems can be applied to model the mechanical behavior of the product. This constructive modeling approach makes it possible to describe the procedural model of incomplete geometries and to capture the structural relations between components. The paper reports on the computational issues related to VDIM.


1996 ◽  
Vol 20 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Luiz Henrique de Figueiredo ◽  
Jonas Gomes

2019 ◽  
Vol 56 (12) ◽  
pp. 787-796
Author(s):  
O. Furat ◽  
B. Prifling ◽  
D. Westhoff ◽  
M. Weber ◽  
V. Schmidt

1971 ◽  
Vol 2 (3) ◽  
pp. 146-166 ◽  
Author(s):  
DAVID A. WOOLHISER

Physically-based, deterministic models, are considered in this paper. Physically-based, in that the models have a theoretical structure based primarily on the laws of conservation of mass, energy, or momentum; deterministic in the sense that when initial and boundary conditions and inputs are specified, the output is known with certainty. This type of model attempts to describe the structure of a particular hydrologic process and is therefore helpful in predicting what will happen when some change occurs in the system.


2019 ◽  
Vol 19 (11) ◽  
pp. 2477-2495
Author(s):  
Ronda Strauch ◽  
Erkan Istanbulluoglu ◽  
Jon Riedel

Abstract. We developed a new approach for mapping landslide hazards by combining probabilities of landslide impacts derived from a data-driven statistical approach and a physically based model of shallow landsliding. Our statistical approach integrates the influence of seven site attributes (SAs) on observed landslides using a frequency ratio (FR) method. Influential attributes and resulting susceptibility maps depend on the observations of landslides considered: all types of landslides, debris avalanches only, or source areas of debris avalanches. These observational datasets reflect the detection of different landslide processes or components, which relate to different landslide-inducing factors. For each landslide dataset, a stability index (SI) is calculated as a multiplicative result of the frequency ratios for all attributes and is mapped across our study domain in the North Cascades National Park Complex (NOCA), Washington, USA. A continuous function is developed to relate local SI values to landslide probability based on a ratio of landslide and non-landslide grid cells. The empirical model probability derived from the debris avalanche source area dataset is combined probabilistically with a previously developed physically based probabilistic model. A two-dimensional binning method employs empirical and physically based probabilities as indices and calculates a joint probability of landsliding at the intersections of probability bins. A ratio of the joint probability and the physically based model bin probability is used as a weight to adjust the original physically based probability at each grid cell given empirical evidence. The resulting integrated probability of landslide initiation hazard includes mechanisms not captured by the infinite-slope stability model alone. Improvements in distinguishing potentially unstable areas with the proposed integrated model are statistically quantified. We provide multiple landslide hazard maps that land managers can use for planning and decision-making, as well as for educating the public about hazards from landslides in this remote high-relief terrain.


Sign in / Sign up

Export Citation Format

Share Document