hydrologic process
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Belize Lane ◽  
Irene Garousi‐Nejad ◽  
Melissa A. Gallagher ◽  
David G. Tarboton ◽  
Emad Habib

2021 ◽  
Author(s):  
Shuilong Yuan ◽  
Chen Li ◽  
Zhanbin Li ◽  
Zeyu Zhang

<p>As important soil and water conservation engineering measures, there are more than 100,000 check dams constructed on the Loess Plateau; these dams play a vital role in reducing floods and sediment in watersheds. However, the effects of check dams on hydrologic process are still unclear, particularly when they are deployed as a system for watershed soil and water management. This study examined the watershed hydrologic process modulated by the check dam system in a typical Loess Plateau catchment. By simulating scenarios with various numbers of check dams using a distributed physical-based hydrological model, the effects of the number of check dams on runoff generation and concentration were analyzed for the study catchment. The results showed that the presence of check dams reduced the peak discharge and the flood volume and extended the flood duration; the reduction effect on peak discharge was most significant among the three factors. The system of check dams substantially decreased the runoff coefficient, and the runoff coefficient reduction rate was greater for rainstorms with shorter return periods than for rainstorms with longer return periods. The check dams increased the capacity of the catchment regulating and storing floods and extended the average runoff concentration time in the catchment that flattened the instantaneous unit hydrograph. This study reveals the influencing mechanism of check dams on the hydrological process of a watershed under heavy rainstorm conditions and provides a theoretical basis for evaluating the effects of numerous check dams on regional hydrology and water resources on the Loess Plateau.</p>


Author(s):  
Belize Lane ◽  
Irene Garousi-Nejad ◽  
Melissa Gallagher ◽  
Dave Tarboton ◽  
Emad Habib

The era of ”big data” promises to provide new hydrologic insights, and open web-based platforms are being developed and adopted by the hydrologic science community to harness these datasets and data services. This shift accompanies advances in hydrology education and the growth of web-based hydrology learning modules, but their capacity to utilize emerging open platforms and data services to enhance student learning through data-driven activities remains largely untapped. Given that generic equations may not easily translate into local or regional solutions, teaching students to explore how well models or equations work in particular settings or to answer specific problems using real data is essential. This paper introduces an open web-based learning module developed to advance data-driven hydrologic process learning, targeting upper level undergraduate and early graduate students in hydrology and engineering. The module was developed and deployed on the HydroLearn open educational platform, which provides a formal pedagogical structure for developing effective problem-based learning activities. We found that data-driven learning activities utilizing collaborative open web platforms like HydroShare and CUAHSI JupyterHub computational notebooks allowed students to access and work with datasets for systems of personal interest and promoted critical evaluation of results and assumptions. Initial student feedback was generally positive, but also highlights challenges including trouble-shooting and future-proofing difficulties and some resistance to open-source software and programming. Opportunities to further enhance hydrology learning include better articulating the myriad benefits of open web platforms upfront, incorporating additional user-support tools, and focusing methods and questions on implementing and adapting notebooks to explore fundamental processes rather than tools and syntax. The profound shift in the field of hydrology toward big data, open data services and reproducible research practices requires hydrology instructors to rethink traditional content delivery and focus instruction on harnessing these datasets and practices in the preparation of future hydrologists and engineers.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. A37-A42 ◽  
Author(s):  
Erasmus Kofi Oware ◽  
James Irving ◽  
Thomas Hermans

Bayesian Markov-chain Monte Carlo (McMC) techniques are increasingly being used in geophysical estimation of hydrogeologic processes due to their ability to produce multiple estimates that enable comprehensive assessment of uncertainty. Standard McMC sampling methods can, however, become computationally intractable for spatially distributed, high-dimensional problems. We have developed a novel basis-constrained Bayesian McMC difference inversion framework for time-lapse geophysical imaging. The strategy parameterizes the Bayesian inversion model space in terms of sparse, hydrologic-process-tuned bases, leading to dimensionality reduction while accounting for the physics of the target hydrologic process. We evaluate the algorithm on cross-borehole electrical resistivity tomography (ERT) field data acquired during a heat-tracer experiment. We validate the ERT-estimated temperatures with direct temperature measurements at two locations on the ERT plane. We also perform the inversions using the conventional smoothness-constrained inversion (SCI). Our approach estimates the heat plumes without excessive smoothing in contrast with the SCI thermograms. We capture most of the validation temperatures within the 90% confidence interval of the mean. Accounting for the physics of the target process allows the detection of small temperature changes that are undetectable by the SCI. Performing the inversion in the reduced-dimensional model space results in significant gains in computational cost.


CATENA ◽  
2019 ◽  
Vol 172 ◽  
pp. 65-75 ◽  
Author(s):  
Achenafi Teklay ◽  
Yihun T. Dile ◽  
Shimelis G. Setegn ◽  
Solomon S. Demissie ◽  
Dereje H. Asfaw

2016 ◽  
Vol 20 (11) ◽  
pp. 4655-4671 ◽  
Author(s):  
Steven L. Markstrom ◽  
Lauren E. Hay ◽  
Martyn P. Clark

Abstract. parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many.


Sign in / Sign up

Export Citation Format

Share Document