Latitudinal and Elevational Range Shifts under Contemporary Climate Change

Author(s):  
Jonathan Lenoir ◽  
Jens-Christian Svenning
2013 ◽  
Vol 23 (6) ◽  
pp. 646-657 ◽  
Author(s):  
Rosa Menéndez ◽  
Adela González-Megías ◽  
Pierre Jay-Robert ◽  
Rocío Marquéz-Ferrando

2021 ◽  
Vol 9 ◽  
Author(s):  
Montague H. C. Neate-Clegg ◽  
Samuel E. I. Jones ◽  
Joseph A. Tobias ◽  
William D. Newmark ◽  
Çaǧan H. Şekercioǧlu

Globally, birds have been shown to respond to climate change by shifting their elevational distributions. This phenomenon is especially prevalent in the tropics, where elevational gradients are often hotspots of diversity and endemism. Empirical evidence has suggested that elevational range shifts are far from uniform across species, varying greatly in the direction (upslope vs. downslope) and rate of change (speed of elevational shift). However, little is known about the drivers of these variable responses to climate change, limiting our ability to accurately project changes in the future. Here, we compile empirical estimates of elevational shift rates (m/yr) for 421 bird species from eight study sites across the tropics. On average, species shifted their mean elevations upslope by 1.63 ± 0.30 m/yr, their upper limits by 1.62 m ± 0.38 m/yr, and their lower limits by 2.81 ± 0.42 m/yr. Upslope shift rates increased in smaller-bodied, less territorial species, whereas larger species were more likely to shift downslope. When considering absolute shift rates, rates were fastest for species with high dispersal ability, low foraging strata, and wide elevational ranges. Our results indicate that elevational shift rates are associated with species’ traits, particularly body size, dispersal ability, and territoriality. However, these effects vary substantially across sites, suggesting that responses of tropical montane bird communities to climate change are complex and best predicted within the local or regional context.


2007 ◽  
Vol 22 (1) ◽  
pp. 140-150 ◽  
Author(s):  
CAGAN H. SEKERCIOGLU ◽  
STEPHEN H. SCHNEIDER ◽  
JOHN P. FAY ◽  
SCOTT R. LOARIE

2020 ◽  
Author(s):  
Avery Hill ◽  
Christopher Field

Abstract Due to climate change, plant populations experience environmental conditions to which they are not adapted. Our understanding of the next century’s vegetation geography depends on the distance, direction, and rate at which plants redistribute in response to a changing climate. Although plant redistribution in response to contemporary climate change is widely observed, our understanding of its mechanics is nascent. In this study we test the response of plant range shift rates to wildfire occurrence using 33,838 Forest Inventory Analysis plots across five states in the western United States. Wildfire increased the rate of observed range shifts for 6/8 tree species by more than 22% on average, suggesting that incumbent vegetation can act as a barrier to plant range shifts and that fire management may play an important role in facilitating transitions between vegetation types in response to climate change.


2013 ◽  
Vol 9 (1) ◽  
pp. 20120806 ◽  
Author(s):  
Steven L. Chown ◽  
Peter C. le Roux ◽  
Tshililo Ramaswiela ◽  
Jesse M. Kalwij ◽  
Justine D. Shaw ◽  
...  

Climate change leads to species range shifts and consequently to changes in diversity. For many systems, increases in diversity capacity have been forecast, with spare capacity to be taken up by a pool of weedy species moved around by humans. Few tests of this hypothesis have been undertaken, and in many temperate systems, climate change impacts may be confounded by simultaneous increases in human-related disturbance, which also promote weedy species. Areas to which weedy species are being introduced, but with little human disturbance, are therefore ideal for testing the idea. We make predictions about how such diversity capacity increases play out across elevational gradients in non-water-limited systems. Then, using modern and historical data on the elevational range of indigenous and naturalized alien vascular plant species from the relatively undisturbed sub-Antarctic Marion Island, we show that alien species have contributed significantly to filling available diversity capacity and that increases in energy availability rather than disturbance are the probable underlying cause.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


Sign in / Sign up

Export Citation Format

Share Document