Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges

2013 ◽  
Vol 23 (6) ◽  
pp. 646-657 ◽  
Author(s):  
Rosa Menéndez ◽  
Adela González-Megías ◽  
Pierre Jay-Robert ◽  
Rocío Marquéz-Ferrando
Ecography ◽  
2018 ◽  
Vol 41 (9) ◽  
pp. 1510-1519 ◽  
Author(s):  
Ali J. Birkett ◽  
George Alan Blackburn ◽  
Rosa Menéndez

2021 ◽  
Vol 9 ◽  
Author(s):  
Montague H. C. Neate-Clegg ◽  
Samuel E. I. Jones ◽  
Joseph A. Tobias ◽  
William D. Newmark ◽  
Çaǧan H. Şekercioǧlu

Globally, birds have been shown to respond to climate change by shifting their elevational distributions. This phenomenon is especially prevalent in the tropics, where elevational gradients are often hotspots of diversity and endemism. Empirical evidence has suggested that elevational range shifts are far from uniform across species, varying greatly in the direction (upslope vs. downslope) and rate of change (speed of elevational shift). However, little is known about the drivers of these variable responses to climate change, limiting our ability to accurately project changes in the future. Here, we compile empirical estimates of elevational shift rates (m/yr) for 421 bird species from eight study sites across the tropics. On average, species shifted their mean elevations upslope by 1.63 ± 0.30 m/yr, their upper limits by 1.62 m ± 0.38 m/yr, and their lower limits by 2.81 ± 0.42 m/yr. Upslope shift rates increased in smaller-bodied, less territorial species, whereas larger species were more likely to shift downslope. When considering absolute shift rates, rates were fastest for species with high dispersal ability, low foraging strata, and wide elevational ranges. Our results indicate that elevational shift rates are associated with species’ traits, particularly body size, dispersal ability, and territoriality. However, these effects vary substantially across sites, suggesting that responses of tropical montane bird communities to climate change are complex and best predicted within the local or regional context.


2007 ◽  
Vol 22 (1) ◽  
pp. 140-150 ◽  
Author(s):  
CAGAN H. SEKERCIOGLU ◽  
STEPHEN H. SCHNEIDER ◽  
JOHN P. FAY ◽  
SCOTT R. LOARIE

2016 ◽  
Vol 17 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Harald Bugmann ◽  
Thomas Cordonnier ◽  
Heimo Truhetz ◽  
Manfred J. Lexer

2018 ◽  
Vol 115 (23) ◽  
pp. 6004-6009 ◽  
Author(s):  
Paul R. Elsen ◽  
William B. Monahan ◽  
Adina M. Merenlender

Protected areas (PAs) that span elevational gradients enhance protection for taxonomic and phylogenetic diversity and facilitate species range shifts under climate change. We quantified the global protection of elevational gradients by analyzing the elevational distributions of 44,155 PAs in 1,010 mountain ranges using the highest resolution digital elevation models available. We show that, on average, mountain ranges in Africa and Asia have the lowest elevational protection, ranges in Europe and South America have intermediate elevational protection, and ranges in North America and Oceania have the highest elevational protection. We use the Convention on Biological Diversity’s Aichi Target 11 to assess the proportion of elevational gradients meeting the 17% suggested minimum target and examine how different protection categories contribute to elevational protection. When considering only strict PAs [International Union for Conservation of Nature (IUCN) categories I–IV, n = 24,706], nearly 40% of ranges do not contain any PAs, roughly half fail to meet the 17% target at any elevation, and ∼75% fail to meet the target throughout ≥50% of the elevational gradient. Observed elevational protection is well below optimal, and frequently below a null model of elevational protection. Including less stringent PAs (IUCN categories V–VI and nondesignated PAs, n = 19,449) significantly enhances elevational protection for most continents, but several highly biodiverse ranges require new or expanded PAs to increase elevational protection. Ensuring conservation outcomes for PAs with lower IUCN designations as well as strategically placing PAs to better represent and connect elevational gradients will enhance ecological representation and facilitate species range shifts under climate change.


2013 ◽  
Vol 9 (1) ◽  
pp. 20120806 ◽  
Author(s):  
Steven L. Chown ◽  
Peter C. le Roux ◽  
Tshililo Ramaswiela ◽  
Jesse M. Kalwij ◽  
Justine D. Shaw ◽  
...  

Climate change leads to species range shifts and consequently to changes in diversity. For many systems, increases in diversity capacity have been forecast, with spare capacity to be taken up by a pool of weedy species moved around by humans. Few tests of this hypothesis have been undertaken, and in many temperate systems, climate change impacts may be confounded by simultaneous increases in human-related disturbance, which also promote weedy species. Areas to which weedy species are being introduced, but with little human disturbance, are therefore ideal for testing the idea. We make predictions about how such diversity capacity increases play out across elevational gradients in non-water-limited systems. Then, using modern and historical data on the elevational range of indigenous and naturalized alien vascular plant species from the relatively undisturbed sub-Antarctic Marion Island, we show that alien species have contributed significantly to filling available diversity capacity and that increases in energy availability rather than disturbance are the probable underlying cause.


Sign in / Sign up

Export Citation Format

Share Document