scholarly journals Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis

2017 ◽  
Vol 23 (10) ◽  
pp. 4094-4105 ◽  
Author(s):  
Sarah A. MacLean ◽  
Steven R. Beissinger
2011 ◽  
Vol 62 (9) ◽  
pp. 1027 ◽  
Author(s):  
David J. Booth ◽  
Nick Bond ◽  
Peter Macreadie

One of the most obvious and expected impacts of climate change is a shift in the distributional range of organisms, which could have considerable ecological and economic consequences. Australian waters are hotspots for climate-induced environmental changes; here, we review these potential changes and their apparent and potential implications for freshwater, estuarine and marine fish. Our meta-analysis detected <300 papers globally on ‘fish’ and ‘range shifts’, with ~7% being from Australia. Of the Australian papers, only one study exhibited definitive evidence of climate-induced range shifts, with most studies focussing instead on future predictions. There was little consensus in the literature regarding the definition of ‘range’, largely because of populations having distributions that fluctuate regularly. For example, many marine populations have broad dispersal of offspring (causing vagrancy). Similarly, in freshwater and estuarine systems, regular environmental changes (e.g. seasonal, ENSO cycles – not related to climate change) cause expansion and contraction of populations, which confounds efforts to detect range ‘shifts’. We found that increases in water temperature, reduced freshwater flows and changes in ocean currents are likely to be the key drivers of climate-induced range shifts in Australian fishes. Although large-scale frequent and rigorous direct surveys of fishes across their entire distributional ranges, especially at range edges, will be essential to detect range shifts of fishes in response to climate change, we suggest careful co-opting of fisheries, museum and other regional databases as a potential, but imperfect alternative.


2021 ◽  
Vol 9 ◽  
Author(s):  
Montague H. C. Neate-Clegg ◽  
Samuel E. I. Jones ◽  
Joseph A. Tobias ◽  
William D. Newmark ◽  
Çaǧan H. Şekercioǧlu

Globally, birds have been shown to respond to climate change by shifting their elevational distributions. This phenomenon is especially prevalent in the tropics, where elevational gradients are often hotspots of diversity and endemism. Empirical evidence has suggested that elevational range shifts are far from uniform across species, varying greatly in the direction (upslope vs. downslope) and rate of change (speed of elevational shift). However, little is known about the drivers of these variable responses to climate change, limiting our ability to accurately project changes in the future. Here, we compile empirical estimates of elevational shift rates (m/yr) for 421 bird species from eight study sites across the tropics. On average, species shifted their mean elevations upslope by 1.63 ± 0.30 m/yr, their upper limits by 1.62 m ± 0.38 m/yr, and their lower limits by 2.81 ± 0.42 m/yr. Upslope shift rates increased in smaller-bodied, less territorial species, whereas larger species were more likely to shift downslope. When considering absolute shift rates, rates were fastest for species with high dispersal ability, low foraging strata, and wide elevational ranges. Our results indicate that elevational shift rates are associated with species’ traits, particularly body size, dispersal ability, and territoriality. However, these effects vary substantially across sites, suggesting that responses of tropical montane bird communities to climate change are complex and best predicted within the local or regional context.


2020 ◽  
Author(s):  
Avery Hill ◽  
Christopher Field

Abstract Due to climate change, plant populations experience environmental conditions to which they are not adapted. Our understanding of the next century’s vegetation geography depends on the distance, direction, and rate at which plants redistribute in response to a changing climate. Although plant redistribution in response to contemporary climate change is widely observed, our understanding of its mechanics is nascent. In this study we test the response of plant range shift rates to wildfire occurrence using 33,838 Forest Inventory Analysis plots across five states in the western United States. Wildfire increased the rate of observed range shifts for 6/8 tree species by more than 22% on average, suggesting that incumbent vegetation can act as a barrier to plant range shifts and that fire management may play an important role in facilitating transitions between vegetation types in response to climate change.


2021 ◽  
Vol 9 ◽  
Author(s):  
Meredith A. Zettlemoyer ◽  
Megan L. Peterson

Climate warming is predicted to shift species’ ranges as previously uninhabitable environments just beyond the leading range edges become suitable habitat and trailing range edges become increasingly unsuitable. Understanding which aspects of the environment and species traits mediate these range shifts is critical for understanding species’ possible redistributions under global change, yet we have a limited understanding of the ecological and evolutionary responses underlying population spread or extinction at species’ range edges. Within plant populations, shifts in flowering phenology have been one of the strongest and most consistent responses to climate change, and are likely to play an important role in mediating population dynamics within and beyond species’ ranges. However, the role of phenological shifts, and particularly phenological plasticity, in species’ range shifts remains relatively unstudied. Here, we synthesize literature on phenology, plasticity, and adaptation to suggest ways in which phenological responses to climate may vary across species’ ranges and review the empirical evidence for and against these hypotheses. We then outline how phenological plasticity could facilitate or hinder persistence and potential consequences of phenological plasticity in range expansions, including phenological cues, shifts in correlated traits, altered species interactions, and effects on gene flow. Finally, we suggest future avenues for research, such as characterizing reaction norms for phenology across a species’ range and in beyond-the-range transplant experiments. Given the prevalence and magnitude of phenological shifts, future work should carefully dissect its costs and benefits for population persistence, and incorporate phenological plasticity into models predicting species’ persistence and geographic range shifts under climate change.


2021 ◽  
pp. 1-52
Author(s):  
Michel Beine ◽  
Lionel Jeusette

Abstract Recent surveys of the literature on climate change and migration emphasize the important diversity of outcomes and approaches of the empirical studies. In this paper, we conduct a meta-analysis in order to investigate the role of the methodological choices of these empirical studies in finding some particular results concerning the role of climatic factors as drivers of human mobility. We code 51 papers representative of the literature in terms of methodological approaches. This results in the coding of more than 85 variables capturing the methodology of the main dimensions of the analysis at the regression level. These dimensions include authors' reputation, type of mobility, measures of mobility, type of data, context of the study, econometric methods, and last but not least measures of the climatic factors. We look at the influence of these characteristics on the probability of finding any effect of climate change, a displacement effect, an increase in immobility, and evidence in favor of a direct vs. an indirect effect. Our results highlight the role of some important methodological choices, such as the frequency of the data on mobility, the level of development, the measures of human mobility and of the climatic factors as well as the econometric methodology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshiaki Mizuno ◽  
Nagahiro Kojima ◽  
Satoshi Asano

AbstractEcosystem-based disaster risk reduction (Eco-DRR) is an important concept to the adaption of climate change for a sustainable life. In Japan, it is anticipated that damages caused by sediment production will be increased as the intensity and amount of rainfall are increased by climate change. Thus, we need to know the Eco-DRR effect of the forest for planning sustainable land use by evidence-based data. In this study, we focused on the relationship between sediment production rate and the understory coverage rate of a low mountain forest in the granite area. From the results of the field survey and statistical meta-analysis, the sediment production rate was reduced by 97% in granite area mountain forest when the understory coverage rate was 60% or more compared to when less than 30% by evidence-based data. Accordingly, we found that it will be necessary to keep forests with an understory coverage rate of 60% or more when considering the risk-reducing effect of sediment disaster in granite area mountain forests for the adaption of climate change.


2014 ◽  
Vol 60 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Leonard Sandin ◽  
Astrid Schmidt-Kloiber ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen ◽  
Nikolai Friberg

Abstract Freshwater habitats and organisms are among the most threatened on Earth, and freshwater ecosystems have been subject to large biodiversity losses. We developed a Climate Change Sensitivity (CCS) indicator based on trait information for a selection of stream- and lake-dwelling Ephemeroptera, Plecoptera and Trichoptera taxa. We calculated the CCS scores based on ten species traits identified as sensitive to global climate change. We then assessed climate change sensitivity between the six main ecoregions of Sweden as well as the three Swedish regions based on Illies. This was done using biological data from 1, 382 stream and lake sites where we compared large-scale (ecoregional) patterns in climate change sensitivity with potential future exposure of these ecosystems to increased temperatures using ensemble-modelled future changes in air temperature. Current (1961~1990) measured temperature and ensemble-modelled future (2100) temperature showed an increase from the northernmost towards the southern ecoregions, whereas the predicted temperature change increased from south to north. The CCS indicator scores were highest in the two northernmost boreal ecoregions where we also can expect the largest global climate change-induced increase in temperature, indicating an unfortunate congruence of exposure and sensitivity to climate change. These results are of vital importance when planning and implementing management and conservation strategies in freshwater ecosystems, e.g., to mitigate increased temperatures using riparian buffer strips. We conclude that traits information on taxa specialization, e.g., in terms of feeding specialism or taxa having a preference for high altitudes as well as sensitivity to changes in temperature are important when assessing the risk from future global climate change to freshwater ecosystems.


Sign in / Sign up

Export Citation Format

Share Document