EFFECTS OF IN VIVO EXPOSURE OF CRASSOSTREA VIRGINICA TO HEAVY METALS ON HEMOCYTE VIABILITY AND ACTIVITY LEVELS OF LYSOSOMAL ENZYMES11This research was supported by a contract (DE-AS09-83ER60132) from the U.S. Department of Energy.

1990 ◽  
pp. 513-524 ◽  
Author(s):  
Thomas C. Cheng
2006 ◽  
Vol 72 (11) ◽  
pp. 7074-7082 ◽  
Author(s):  
Y. Barak ◽  
D. F. Ackerley ◽  
C. J. Dodge ◽  
L. Banwari ◽  
C. Alex ◽  
...  

ABSTRACT Most polluted sites contain mixed waste. This is especially true of the U.S. Department of Energy (DOE) waste sites which hold a complex mixture of heavy metals, radionuclides, and organic solvents. In such environments enzymes that can remediate multiple pollutants are advantageous. We report here evolution of an enzyme, ChrR6 (formerly referred to as Y6), which shows a markedly enhanced capacity for remediating two of the most serious and prevalent DOE contaminants, chromate and uranyl. ChrR6 is a soluble enzyme and reduces chromate and uranyl intracellularly. Thus, the reduced product is at least partially sequestered and nucleated, minimizing the chances of reoxidation. Only one amino acid change, Tyr128Asn, was responsible for the observed improvement. We show here that ChrR6 makes Pseudomonas putida and Escherichia coli more efficient agents for bioremediation if the cellular permeability barrier to the metals is decreased.


1993 ◽  
Vol 69 (05) ◽  
pp. 441-447 ◽  
Author(s):  
Carolyn L Orthner ◽  
Billy Kolen ◽  
William N Drohan

SummaryActivated protein C (APC) is a serine protease which plays an important role as a naturally occurring antithrombotic enzyme. APC, which is formed by thrombin-catalyzed limited proteolysis of the zymogen protein C, functions as an anticoagulant by proteolytic inactivation of the coagulation cofactors VIIIa and Va. APC is inhibited by several members of the serpin family as well a by α2-macroglobulin. APC is being developed as a therapeutic for the prevention and treatment of thrombosis. We have developed an assay to quantify circulating levels of enzymatically active APC during its administration to patients, in healthy individuals, and in various disease states. This assay utilizes an EDTA-dependent anti-protein C monoclonal antibody (Mab) 7D7B10 to capture both APC and protein C from plasma, prepared from blood collected in an anticoagulant supplemented with the reversible inhibitor p-aminobenzamidine. Mab 7D7B10-derivatized agarose beads are added to the wells of a 96-well filtration plate, equilibrated with Tris-buffered saline, and incubated for 10 min with 200 μl of plasma. After washing, APC and protein C are eluted from the immunosorbent beads with a calcium-containing buffer into the wells of a 96-well microtiter plate containing antithrombin III (ATIII) and heparin. The amidolytic activity of APC is then measured on a kinetic plate reader following the addition of L-pyroglutamyl-L-prolyl-L-arginine-p-nitroanilide (S-2366) substrate.The rate of substrate hydrolysis was proportional to APC concentration over a 200-fold concentration range (5.0 to 1,000 ng/ml) when measured continuously over a 15 to 30 min time period. The coefficient of variation was 5.9% at 35 ng/ml and 8.8% at 350 ng/ml APC. The sensitivity of the assay could be increased by measuring the amount of color produced after longer incubation times in the endpoint mode. The measured APC activity levels were little affected by varying protein C or prothrombin over the extremes of 0 to 150% of normal plasma concentrations. By constructing the standard curve in protein C-deficient plasma, the concentration of APC activity in normal pooled plasma was determined to be 2.8 ng/ml (45 pM), which represents 0.08% of the protein C concentration. The assay was approximately 50-fold more sensitive than the identical assay, but using Mab-coated microtiter wells rather than immunosorbent beads as the capture step.


1982 ◽  
Vol 14 (12) ◽  
pp. 45-59 ◽  
Author(s):  
R L Jolley ◽  
R B Cumming ◽  
N E Lee ◽  
J E Thompson ◽  
L R Lewis

The principal objective of this research program was to examine the effects of disinfection by chlorine, ozone, and ultraviolet light (uv) irradiation on nonvolatile organic constituents relative to chemical effects and the formation of micropollutants. In a comparative study of highly concentrated samples of effluents from nine wastewater treatment plants, it was determined that disinfection with chlorine or ozone both destroys and produces nonvolatile organic constituents including mutagenic constituents. The chemical effects of disinfection by uv irradiation were relatively slight, although the mutagenic constituents in one effluent were eliminated by this treatment. The nine wastewater treatment plants were selected by using the following criteria: disinfection method, nature of wastewater source, type of wastewater treatment, standards for quality of treatment, and geographical location. The treatment plants varied from pilot plant and small plants [0.05 m3/s (1 Mgd)] treating principally domestic waste to large plants [4.4 m3/s (100 Mgd)] treating principally industrial waste. Four plants used only chlorine for disinfection, four used ozone for disinfection, and one used uv irradiation for disinfection. Eight treatment plants used conventional secondary or more advanced wastewater treatment, and one plant used primary treatment. The following methodology was used in this investigation: grab sample collection of 40-L samples of undisinfected and disinfected effluents; concentration of the effluents by lyophilization; high-pressure liquid chromatographic separation of nonvolatile organic constituents in effluent concentrates using uv absorbance, cerate oxidation, and fluorescence detectors; bacterial mutagenicity testing of concentrates and chromatographic fractions; and identification and characterization of nonvolatile organic constituents in mutagenic HPLC fractions. With these procedures, over 100 micropollutants were identified in the wastewater effluent concentrates. Interplant comparison revealed considerable variability in the presence of mutagenic nonvolatile organic constituents in the undisinfected effluent concentrates as well as much variability in the destruction of the mutagenic constituents and the formation of other mutagenic constituents as a result of disinfection. Moreover, the effects varied on samples collected at the same wastewater treatment plant at different periods. No micropollutants known to be mutagens were identified in the mutagenic HPLC fractions separated from the undisinfected, chlorinated, and ozonated effluent concentrates. The mutagenic activity of the nonvolatile organic constituents in one chlorinated effluent concentrate was not attributable to organic chloramines. Most of the mutagens detected in effluent concentrates are direct acting and do not require metabolic activation. Both base-pair substitution mutagens and frame-shift mutagens occurred in the wastewater concentrates, but the former type was more frequent. For many of the compounds in effluents, strain TA-1535 was more sensitive than strain TA-100 in detecting base-pair substitution mutagens. *Research sponsored by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The work was carried out at the Oak Ridge National Laboratory, which is operated by the U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Corporation.


Recycling ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 31
Author(s):  
Linda Gaines ◽  
Qiang Dai ◽  
John T. Vaughey ◽  
Samuel Gillard

The expected rapid growth in electric vehicle deployment will inevitably be followed by a corresponding rise in the supply of end-of-life vehicles and their lithium-ion batteries (LIBs). The batteries may be reused, but will eventually be spent and provide a potential domestic resource that can help supply materials for future battery production. However, commercial recycling processes depend on profits from recovery of cobalt, use of which is being reduced in new cathode chemistries. The U.S. Department of Energy, therefore, established the ReCell Center in early 2019 to develop robust LIB recycling technology that would be economical even for batteries that contain no cobalt. The central feature of the technology is recovery of the cathode material with its unique crystalline cathode morphology intact in order to retain its value and functionality. Other materials are recovered as well in order to maximize revenues and minimize waste-handling costs. Analysis and modeling serve to evaluate and compare process options so that we can identify those that will be most economical while still minimizing energy use and environmental impacts. This paper provides background and describes highlights of the center’s first 2 years of operation.


Sign in / Sign up

Export Citation Format

Share Document