Liquid Immiscibility in Eutectic Systems

Author(s):  
C. M. Jantzen ◽  
D. G. Howitt

The mullite-SiO2 liquidus has been extensively studied, and it has been shown that the flattening of the liquidus is related to the existence of a metastable region of liquid immiscibility at sub-liquidus temperatures which is detectable by transmission electron microscopy (TEM) (Fig. 1).


Cryobiology ◽  
2020 ◽  
Vol 97 ◽  
pp. 256-257
Author(s):  
Kathlyn Hornberger ◽  
Rui Li ◽  
Allison Hubel
Keyword(s):  

2021 ◽  
Author(s):  
Dongkun Yu ◽  
Zhimin Xue ◽  
Tiancheng Mu

Various eutectic systems including eutectic metals, eutectic salts, and deep eutectic solvents have been proposed and applied in engineering, energy and environmental fields.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 103
Author(s):  
Nikolai Berdnikov ◽  
Victor Nevstruev ◽  
Pavel Kepezhinskas ◽  
Ivan Astapov ◽  
Natalia Konovalova

While gold partitioning into hydrothermal fluids responsible for the formation of porphyry and epithermal deposits is currently well understood, its behavior during the differentiation of metal-rich silicate melts is still subject of an intense scientific debate. Typically, gold is scavenged into sulfides during crustal fractionation of sulfur-rich mafic to intermediate magmas and development of native forms and alloys of this important precious metal in igneous rocks and associated ores are still poorly documented. We present new data on gold (Cu-Ag-Au, Ni-Cu-Zn-Ag-Au, Ti-Cu-Ag-Au, Ag-Au) alloys from iron oxide deposits in the Lesser Khingan Range (LKR) of the Russian Far East. Gold alloy particles are from 10 to 100 µm in size and irregular to spherical in shape. Gold spherules were formed through silicate-metal liquid immiscibility and then injected into fissures surrounding the ascending melt column, or emplaced through a volcanic eruption. Presence of globular (occasionally with meniscus-like textures) Cu-O micro-inclusions in Cu-Ag-Au spherules confirms their crystallization from a metal melt via extremely fast cooling. Irregularly shaped Cu-Ag-Au particles were formed through hydrothermal alteration of gold-bearing volcanic rocks and ores. Association of primarily liquid Cu-Ag-Au spherules with iron-oxide mineralization in the LKR indicates possible involvement of silicate-metallic immiscibility and explosive volcanism in the formation of the Andean-type iron oxide gold-copper (IOCG) and related copper-gold porphyry deposits in the deeper parts of sub-volcanic epithermal systems. Thus, formation of gold alloys in deep roots of arc volcanoes may serve as a precursor and an exploration guide for high-grade epithermal gold mineralization at shallow structural levels of hydrothermal-volcanic environments in subduction zones.


Sign in / Sign up

Export Citation Format

Share Document