MECHANICS OF SYSTEMS, PRINCIPLE OF VIRTUAL WORK, AND D'ALEMBERT'S PRINCIPLE

Mechanics ◽  
2013 ◽  
pp. 48-86
Author(s):  
ARNOLD SOMMERFELD
1990 ◽  
Vol 112 (2) ◽  
pp. 168-174 ◽  
Author(s):  
F. L. Litvin ◽  
J. Tan

Application of D’Alembert’s principle for determination of dynamic bearing reactions in joints of spatial linkages and parallel manipulators needs the simultaneous solution of a large system of equations. The authors of this paper propose an approach that is a combined application of principle of virtual work and D’Alembert’s principle. The main advantages of the proposed approach are: (1) reduction of the number of equations that have to be solved simultaneously, and (2) simplification of the expressions for the relative virtual velocity. The proposed approach is illustrated with the example of a 7-bar linkage and its application is explained with the crank-slider linkage.


Author(s):  
Jennifer Coopersmith

It is explained how the mysterious Principle of Virtual Work in statics is extended to the even more mysterious Principle of d’Alembert’s in dynamics. This is achieved by d’Alembert’s far-sighted stratagem: considering a reversed massy acceleration as an inertial force. A worked example is given (the half-Atwood machine or “black box”). Some counter-intuitive aspects are made intuitive by more examples: the Pluto-Charon system of orbiting planets; Newton’s and then Mach’s explanation of Newton’s bucket. Also, it is demonstrated that the law of the conservation of energy actually follows from d’Alembert’s Principle. The reader is alerted to the astoundingly fundamental nature of d’Alembert’s Principle. It is the cornerstone of classical, relativistic, and quantum mechanics. As Lanczos writes: “All the different principles of mechanics are merely mathematically different formulations of d’Alembert’s Principle”.


1976 ◽  
Vol 4 (4) ◽  
pp. 219-232 ◽  
Author(s):  
Ö. Pósfalvi

Abstract The effective elastic properties of the cord-rubber composite are deduced from the principle of virtual work. Such a composite must be compliant in the noncord directions and therefore undergo large deformations. The Rivlin-Mooney equation is used to derive the effective Poisson's ratio and Young's modulus of the composite and as a basis for their measurement in uniaxial tension.


Author(s):  
Peter Mann

This chapter discusses virtual work, returning to the Newtonian framework to derive the central Lagrange equation, using d’Alembert’s principle. It starts off with a discussion of generalised force, applied force and constraint force. Holonomic constraints and non-holonomic constraint equations are then investigated. The corresponding principles of Gauss (Gauss’s least constraint) and Jourdain are also documented and compared to d’Alembert’s approach before being generalised into the Mangeron–Deleanu principle. Kane’s equations are derived from Jourdain’s principle. The chapter closes with a detailed covering of the Gibbs–Appell equations as the most general equations in classical mechanics. Their reduction to Hamilton’s principle is examined and they are used to derive the Euler equations for rigid bodies. The chapter also discusses Hertz’s least curvature, the Gibbs function and Euler equations.


Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


2012 ◽  
Vol 28 (3) ◽  
pp. 385-401 ◽  
Author(s):  
J. Jesús Cervantes-Sánchez ◽  
José M. Rico-Martínez ◽  
Salvador Pacheco-Gutiérrez ◽  
Gustavo Cerda-Villafaña

Author(s):  
Quantian Luo ◽  
Liyong Tong

This paper presents optimal design for nonlinear compliant cellular structures with bi- and multi-stable states via topology optimization. Based on the principle of virtual work, formulations for displacements and forces are derived and expressed in terms of stress and strain in all load steps in nonlinear finite element analysis. Optimization for compliant structures with bi-stable states is then formulated as: 1) to maximize the displacement under specified force larger than its critical one; and 2) to minimize the reaction force for the prescribed displacement larger than its critical one. Algorithms are developed using the present formulations and the moving iso-surface threshold method. Optimal design for a unit cell with bi-stable states is studied first, and then designs of multi-stable compliant cellular structures are discussed.


Sign in / Sign up

Export Citation Format

Share Document