PROPERTIES OF EXPRESSION OF THE 35S PROMOTER FROM CaMV IN TRANSGENIC TOBACCO PLANTS

Author(s):  
Ferenc Nagy ◽  
Joan T. Odell ◽  
Giorgio Morelli ◽  
Nam-Hai Chua
2009 ◽  
Vol 46 (2) ◽  
pp. 63-75 ◽  
Author(s):  
Roya Razavizadeh ◽  
Ali Ehsanpour

Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plantsIn arid and semiarid regions, soil salinity limits crop production. Proline accumulation in transgenic plants results in increased stress tolerance, but the underlying mechanism was unclear. To elucidate it, effects of salt stress on the expression pattern of Δ1-pyrroline-5-carboxylate synthetase (P5CS), proline content, catalase (CAT), and ascorbate peroxidase (APX) activities were analyzed in transgenic tobacco (Nicotiana tabacumcv. Wisconsin). Transgenic tobacco plants containing CaMV 35S promoter and theP5CSgene from moth bean (Vigna aconitifolia), linked to theNPTIIgene, were culturedin vitrowith or without 300 mM NaCl. The expression pattern ofP5CSwas evaluated using semiquantitative RT-PCR (reverse transcription-polymerase chain reaction). Time-course experiments showed an increase in proline content after 4 h of the treatment. The level ofP5CStranscripts was increased significantly in leaves and roots of transgenic plants after 24 and 48 h of treatment. This rise in transcripts was concomitant with the highest increase in proline content. In addition, CAT and APX activities increased under salt stress, and their highest activities were observed after 24 and 48 h of NaCl treatment. These results suggest thatP5CSis an inducible gene regulating the activities of CAT and APX and the accumulation of proline in plants subjected to salt stress.


2017 ◽  
Vol 15 (1) ◽  
pp. 12
Author(s):  
Bulat R Kuluev ◽  
Zoya A Berezhneva ◽  
Elena V Mikhaylova ◽  
Bogdan N Postrigan ◽  
Aleksey V Knyazev

Glutathione is the most important part of plant antioxidant defense system. Biosynthesis of glutathione in the cells is performed by two enzymes: glutamylcysteine ligase and glutathione synthetase, the latter catalyzing the attachment of glycine to a dipeptide glutamylcysteine. In literature there is information on the improvement of heavy metal-tolerance of transgenic plants due to the increase in the expression level of glutathione synthetase genes. However there is not enough data on the tolerance of these plants to other types of abiotic stress. Therefore the aim of our research was to make transgenic tobacco plants with constitutive expression of rapeseed glutathione synthetase gene BnGSH and to estimate their growth parameters in normal conditions and under salt, drough and cold stress. Using agrobacterial transformation method, we generated 17 lines of transgenic plants containing rapeseed BnGSH gene under control of 35S promoter. The presence of transgenes was confirmed by PCR method and histochemical analysis of the activity of GUS reporter gene. 12 lines with the highest expression of BnGSH gene were chosen on the basis of the results of RT-PCR. We performed morphological analysis, including measurements of stem hight, leaf area, flower length, fresh and dry weight of shoots and root length. Some transgenic plants demonstrated increased productivity in normal conditions as well as under NaCl stress. However, no change in drought and cold tolerance was observed in transgenic plants.


2005 ◽  
Vol 14 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Helga Schinkel ◽  
Andreas Schiermeyer ◽  
Raphael Soeur ◽  
Rainer Fischer ◽  
Stefan Schillberg

Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


Sign in / Sign up

Export Citation Format

Share Document