phosphoenolpyruvate carboxylase
Recently Published Documents


TOTAL DOCUMENTS

1082
(FIVE YEARS 34)

H-INDEX

62
(FIVE YEARS 4)

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Cao Zhi ◽  
Muhammad Moaaz Ali ◽  
Shariq Mahmood Alam ◽  
Shaista Gull ◽  
Sajid Ali ◽  
...  

Phosphoenolpyruvate carboxylase (PEPC) genes have multiple potential roles in plant metabolism such as regulation and accumulation of organic acids in fruits, movement of guard cells and stress tolerance, etc. However, the systematic identification and characterization of PEPC genes in Rosaceae species i.e., loquat, apple, peach, strawberry, and pear are yet to be performed. In present study, 27 putative PEPC genes (loquat 4, apple 6, peach 3, strawberry 9, and pear 5) were identified. To further investigate the role of those PEPC genes, comprehensive bioinformatics and expression analysis were performed. In bioinformatic analysis, the physiochemical properties, conserved domains, gene structure, conserved motif, phylogenetic and syntenic analysis of PEPC genes were performed. The result revealed that the PEPcase superfamily domain was conserved in all examined PEPC proteins. Most of the PEPC proteins were predicted to be localized in cytonuclear. Genomic structural and motif analysis showed that the exon and motif number of each PEPC gene ranged dramatically, from 8 to 20, and 7 to 10, respectively. Syntenic analysis indicated that the segmental or whole-genome duplication played a vital role in extension of PEPC gene family in Rosacea species. The Ka and Ks values of duplicated genes depicted that PEPC genes have undergone a strong purifying selection. Furthermore, the expression analysis of PEPC genes in root, mature leaf, stem, full-bloom flower, and ripened fruit of loquat, apple, peach, strawberry, and pear was performed. Some genes were differentially expressed in aforementioned plant tissues, signifying their role in plant metabolism. This study provides the first genome-wide identification, characterization, and expression profiling of PEPC gene family in Rosaceae species, and provides the foundation for further functional analysis.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1641
Author(s):  
Elías Hurtado-Gaitán ◽  
Susana Sellés-Marchart ◽  
James Hartwell ◽  
Maria José Martínez-Esteso ◽  
Roque Bru-Martínez

In grapevine, trans-Resveratrol (tR) is produced as a defence mechanism against stress or infection. tR is also considered to be important for human health, which increases its interest to the scientific community. Transcriptomic analysis in grapevine cell cultures treated with the defence response elicitor methyl-β-cyclodextrin (CD) revealed that both copies of PHOSPHOENOLPYRUVATE CARBOXYLASE KINASE (PPCK) were down-regulated significantly. A role for PPCK in the defence response pathway has not been proposed previously. We therefore analysed the control of PPCK transcript levels in grapevine cell cultures and leaves elicited with CD. Moreover, phosphoenolpyruvate carboxylase (PPC), stilbene synthase (STS), and the transcription factors MYB14 and WRKY24, which are involved in the activation of STS transcription, were also analysed by RT-qPCR. The results revealed that under CD elicitation conditions PPCK down-regulation, increased stilbene production and loss of PPC activity occurs in both tissues. Moreover, STS transcripts were co-induced with MYB14 and WRKY24 in cell cultures and leaves. These genes have not previously been reported to respond to CD in grape leaves. Our findings thus support the hypothesis that PPCK is involved in diverting metabolism towards stilbene biosynthesis, both for in vitro cell culture and whole leaves. We thus provide new evidence for PEP being redirected between primary and secondary metabolism to support tR production and the stress response.


Heliyon ◽  
2021 ◽  
pp. e08464
Author(s):  
Fátima Barreda-Huerta ◽  
Ismael Bustos-Jaimes ◽  
Carlos Mújica-Jiménez ◽  
Rosario A. Muñoz-Clares

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1887
Author(s):  
Lorrenne Caburatan ◽  
Joonho Park

Phosphoenolpyruvate carboxylase (PEPC) is a ubiquitous cytosolic enzyme, which is crucial for plant carbon metabolism. PEPC participates in photosynthesis by catalyzing the initial fixation of atmospheric CO2 and is abundant in both C4 and crassulacean acid metabolism leaves. PEPC is differentially expressed at different stages of plant development, mostly in leaves, but also in developing seeds. PEPC is known to show tissue-specific distribution in leaves and in other plant organs, such as roots, stems, and flowers. Plant PEPC undergoes reversible phosphorylation and monoubiquitination, which are posttranslational modifications playing important roles in regulatory processes and in protein localization. Phosphorylation activates the PEPC enzyme, making it more sensitive to glucose-6-phosphate and less sensitive to malate or aspartate. PEPC phosphorylation is known to be diurnally regulated and delicately changed in response to various environmental stimuli, in addition to light. PEPCs belong to a small gene family encoding several plant-type and distantly related bacterial-type PEPCs. This paper provides a minireview of the general information on PEPCs in both C4 and C3 plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Cao ◽  
Gang Cheng ◽  
Lu Wang ◽  
Tayier Maimaitijiang ◽  
Haiyan Lan

Phosphoenolpyruvate carboxylase (PEPC) plays pivotal roles in the carbon fixation of photosynthesis and a variety of metabolic and stress pathways. Suaeda aralocaspica belongs to a single-cellular C4 species and carries out a photosynthetic pathway in an unusually elongated chlorenchyma cell, which is expected to have PEPCs with different characteristics. To identify the different isoforms of PEPC genes in S. aralocaspica and comparatively analyze their expression and regulation patterns as well as the biochemical and enzymatic properties in this study, we characterized a bacterial-type PEPC (BTPC; SaPEPC-4) in addition to the two plant-type PEPCs (PTPCs; SaPEPC-1 and SaPEPC-2) using a genome-wide identification. SaPEPC-4 presented a lower expression level in all test combinations with an unknown function; two SaPTPCs showed distinct subcellular localizations and different spatiotemporal expression patterns but positively responded to abiotic stresses. Compared to SaPEPC-2, the expression of SaPEPC-1 specifically in chlorenchyma cell tissues was much more active with the progression of development and under various stresses, particularly sensitive to light, implying the involvement of SaPEPC-1 in a C4 photosynthetic pathway. In contrast, SaPEPC-2 was more like a non-photosynthetic PEPC. The expression trends of two SaPTPCs in response to light, development, and abiotic stresses were also matched with the changes in PEPC activity in vivo (native) or in vitro (recombinant), and the biochemical properties of the two recombinant SaPTPCs were similar in response to various effectors while the catalytic efficiency, substrate affinity, and enzyme activity of SaPEPC-2 were higher than that of SaPEPC-1 in vitro. All the different properties between these two SaPTPCs might be involved in transcriptional (e.g., specific cis-elements), posttranscriptional [e.g., 5′-untranslated region (5′-UTR) secondary structure], or translational (e.g., PEPC phosphorylation/dephosphorylation) regulatory events. The comparative studies on the different isoforms of the PEPC gene family in S. aralocaspica may help to decipher their exact role in C4 photosynthesis, plant growth/development, and stress resistance.


Planta ◽  
2021 ◽  
Vol 254 (3) ◽  
Author(s):  
Jacinto Gandullo ◽  
Rosario Álvarez ◽  
Ana-Belén Feria ◽  
José-Antonio Monreal ◽  
Isabel Díaz ◽  
...  

Abstract Main conclusion A synthetic peptide from the C-terminal end of C4-phosphoenolpyruvate carboxylase is implicated in the proteolysis of the enzyme, and Glc-6P or phosphorylation of the enzyme modulate this effect. Abstract Phosphoenolpyruvate carboxylase (PEPC) is a cytosolic, homotetrameric enzyme that performs a variety of functions in plants. Among them, it is primarily responsible for CO2 fixation in the C4 photosynthesis pathway (C4-PEPC). Here we show that proteolysis of C4-PEPC by cathepsin proteases present in a semi-purified PEPC fraction was enhanced by the presence of a synthetic peptide containing the last 19 amino acids from the C-terminal end of the PEPC subunit (pC19). Threonine (Thr)944 and Thr948 in the peptide are important requirements for the pC19 effect. C4-PEPC proteolysis in the presence of pC19 was prevented by the PEPC allosteric effector glucose 6-phosphate (Glc-6P) and by phosphorylation of the enzyme. The role of these elements in the regulation of PEPC proteolysis is discussed in relation to the physiological context.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0238873
Author(s):  
Jun Yang ◽  
Jing Zhang ◽  
Xian-Qian Niu ◽  
Xue-Lian Zheng ◽  
Xu Chen ◽  
...  

Organic acids and sugars are the primary components that determine the quality and flavor of loquat fruits. In the present study, major organic acids, sugar content, enzyme activities, and the expression of related genes were analyzed during fruit development in two loquat cultivars, ’JieFangZhong’ (JFZ) and ’BaiLi’ (BL). Our results showed that the sugar content increased during fruit development in the two cultivars; however, the organic acid content dramatically decreased in the later stages of fruit development. The differences in organic acid and sugar content between the two cultivars primarily occured in the late stage of fruit development and the related enzymes showed dynamic changes in activies during development. Phosphoenolpyruvate carboxylase (PEPC) and mNAD malic dehydrogenase (mNAD-MDH) showed higher activities in JFZ at 95 days after flowering (DAF) than in BL. However, NADP-dependent malic enzyme (NADP-ME) activity was the lowest at 95 DAF in both JFZ and BL with BL showing higher activity compared with JFZ. At 125 DAF, the activity of fructokinase (FRK) was significantly higher in JFZ than in BL. The activity of sucrose synthase (SUSY) in the sucrose cleavage direction (SS-C) was low at early stages of fruit development and increased at 125 DAF. SS-C activity was higher in JFZ than in BL. vAI and sucrose phosphate synthase (SPS) activities were similar in the two both cultivars and increased with fruit development. RNA-sequencing was performed to determine the candidate genes for organic acid and sugar metabolism. Our results showed that the differentially expressed genes (DEGs) with the greated fold changes in the later stages of fruit development between the two cultivars were phosphoenolpyruvate carboxylase 2 (PEPC2), mNAD-malate dehydrogenase (mNAD-MDH), cytosolic NADP-ME (cyNADP-ME2), aluminum-activated malate transporter (ALMT9), subunit A of vacuolar H+-ATPase (VHA-A), vacuolar H+-PPase (VHP1), NAD-sorbitol dehydrogenase (NAD-SDH), fructokinase (FK), sucrose synthase in sucrose cleavage (SS-C), sucrose-phosphate synthase 1 (SPS1), neutral invertase (NI), and vacuolar acid invertase (vAI). The expression of 12 key DEGs was validated by quantitative reverese transcription PCR (RT-qPCR). Our findings will help understand the molecular mechanism of organic acid and sugar formation in loquat, which will aid in breeding high-quality loquat cultivars.


2021 ◽  
Author(s):  
Toshio Sugimoto ◽  
Naoki Yamamoto ◽  
Takehiro Masumura

The contents of seed storage compounds, protein and oil, determine the best use of soybean seeds, namely materials for food processing and oil production. Genetic and environmental factors could affect the chemical compositions of soybean seeds. However, the mechanisms of how the accumulation of these primary seed compounds is regulated are mostly unclear. In this chapter, we describe the different effects of nodulation on the protein and oil contents in soybean seeds and the crucial role of phosphoenolpyruvate carboxylase (PEPC) in the protein accumulation of soybean seeds. Based on our previous studies on soybean seeds, we introduce five manners deduced; (1) protein accumulation is independent of oil accumulation, (2) nitrogen fixation results in decreasing oil amount per seed and decreased seed oil content, (3) a high pseudo negative correlation between protein and oil contents in seeds is likely to be observed under less nitrogen supply from the soil, (4) nitrogen absorbed from soil during the late growth stage promote seed production, (5) plant-type PEPC, ex. Gmppc2 in soybean could play a role in amino acid biosynthesis for storage protein accumulation in seeds during the late maturation period.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 582
Author(s):  
Degao Liu ◽  
Rongbin Hu ◽  
Jin Zhang ◽  
Hao-Bo Guo ◽  
Hua Cheng ◽  
...  

It has been challenging to simultaneously improve photosynthesis and stress tolerance in plants. Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism that facilitates plant adaptation to water-limited environments. We hypothesized that the ectopic expression of a CAM-specific phosphoenolpyruvate carboxylase (PEPC), an enzyme that catalyzes primary CO2 fixation in CAM plants, would enhance both photosynthesis and abiotic stress tolerance. To test this hypothesis, we engineered a CAM-specific PEPC gene (named AaPEPC1) from Agave americana into tobacco. In comparison with wild-type and empty vector controls, transgenic tobacco plants constitutively expressing AaPEPC1 showed a higher photosynthetic rate and biomass production under normal conditions, along with significant carbon metabolism changes in malate accumulation, the carbon isotope ratio δ13C, and the expression of multiple orthologs of CAM-related genes. Furthermore, AaPEPC1 overexpression enhanced proline biosynthesis, and improved salt and drought tolerance in the transgenic plants. Under salt and drought stress conditions, the dry weight of transgenic tobacco plants overexpressing AaPEPC1 was increased by up to 81.8% and 37.2%, respectively, in comparison with wild-type plants. Our findings open a new door to the simultaneous improvement of photosynthesis and stress tolerance in plants.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 365
Author(s):  
Jiaqi Tu ◽  
Lanlan Feng ◽  
Yanbin Hong ◽  
Qiuyun Liu ◽  
Xia Huang ◽  
...  

Phosphoenolpyruvate carboxylase (PEPC) is a ubiquitous cytosolic enzyme that catalyzes the irreversible β-carboxylation of phosphoenolpyruvate (PEP) in presence of HCO3− to produce oxaloacetate (OAA) during carbon fixation and photosynthesis. It is well accepted that PEPC genes are expressed in plants upon stress. PEPC also supports the biosynthesis of biocompatible osmolytes in many plant species under osmotic stress. There are five isoforms of PEPC found in peanut (Arachis hypogaea L.), namely, AhPEPC1, AhPEPC2, AhPEPC3, AhPEPC4, and AhPEPC5. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the gene expression patterns of these AhPEPC genes were different in mature seeds, stems, roots, flowers, and leaves. The expression of all the plant type PEPC (PTPCs) (AhPEPC1, AhPEPC2, AhPEPC3, and AhPEPC4) was relatively high in roots, while the bacterial type PEPC (BTPC) (AhPEPC5) showed a remarkable expression level in flowers. Principal component analysis (PCA) result showed that AhPEPC3 and AhPEPC4 are correlated with each other, indicating comparatively associations with roots, and AhPEPC5 have a very close relationship with flowers. In order to investigate the function of these AhPEPCs, the fragments of these five AhPEPC cDNA were cloned and expressed in Escherichia coli (E. coli). The recombinant proteins contained a conserved domain with a histidine site, which is important for enzyme catalysis. Results showed that protein fragments of AhPEPC1, AhPEPC2, and AhPEPC5 had remarkable expression levels in E. coli. These three recombinant strains were more sensitive at pH 9.0, and recombinant strains carrying AhPEPC2 and AhPEPC5 fragments exhibited more growth than the control strain with the presence of PEG6000. Our findings showed that the expression of the AhPEPC fragments may enhance the resistance of transformed E. coli to osmotic stress.


Sign in / Sign up

Export Citation Format

Share Document