Action Potential of the Fish Heart ☆

Author(s):  
M Vornanen
Keyword(s):  
1999 ◽  
Vol 202 (13) ◽  
pp. 1763-1775 ◽  
Author(s):  
M. Vornanen

Influx of extracellular Ca2+ plays a major role in the activation of contraction in fish cardiac cells. The relative contributions of Na+/Ca2+ exchange and L-type Ca2+ channels to Ca2+ influx are, however, unknown. Using a physiological action potential as the command pulse in voltage-clamped heart cells, we examined sarcolemmal Ca2+ influx through Na+/Ca2+ exchange and L-type Ca2+ channels in crucian carp (Carassius carassius L.) ventricular myocytes. When other cation conductances were blocked, a Ni2+-sensitive current with the characteristic voltage- and time-dependent properties of the Na+/Ca2+ exchange current could be distinguished. At the maximum overshoot voltage of the ventricular action potential (+40 mV; [Na+]i=10 mmol l-1), the density of the Na+/Ca2+ exchange current was 2.99+/−0.27 pA pF-1 for warm-acclimated fish (23 degrees C) and 2.38+/−0.42 pA pF-1 for cold-acclimated fish (4 degrees C) (means +/− s.e.m., N=5-6; not significantly different, P=0.26). The relative contributions of the Na+/Ca2+ exchanger and L-type Ca2+ channels to Ca2+ influx were estimated using two partly different methods. Integration of the Ni2+-sensitive Na+/Ca2+ exchange current and the verapamil- and Cd2+-sensitive L-type Ca2+ current suggests that, during the action potential, approximately one-third of the activating Ca2+ comes through Na+/Ca2+ exchange and approximately two-thirds through L-type Ca2+ channels. An alternative method of analysis, using the inward tail current as a measure of the total sarcolemmal Ca2+ flux from which the Ni2+-sensitive Na+/Ca2+ exchange current was subtracted to obtain the Ca2+ influx through the channels, suggests that L-type Ca2+ channels and Na+/Ca2+ exchange are almost equally important in the activation of contraction. Furthermore, the time course of cell shortening is not adequately explained by sarcolemmal Ca2+ influx through the channels alone, but is well approximated by the sum of Ca2+ influx through the channels and the exchanger. The present results indicate that reverse Na+/Ca2+ exchange in crucian carp ventricular myocytes has sufficient capacity to trigger contraction and suggest that the exchange current makes a significant contribution to contractile Ca2+ during the physiological action potential. The relative significance of channels and exchanger molecules in sarcolemmal Ca2+ entry into crucian carp ventricular myocytes was unaffected by thermal acclimation when determined at 22 degrees C.


Author(s):  
Joachim R. Sommer ◽  
Teresa High ◽  
Betty Scherer ◽  
Isaiah Taylor ◽  
Rashid Nassar

We have developed a model that allows the quick-freezing at known time intervals following electrical field stimulation of a single, intact frog skeletal muscle fiber isolated by sharp dissection. The preparation is used for studying high resolution morphology by freeze-substitution and freeze-fracture and for electron probe x-ray microanlysis of sudden calcium displacement from intracellular stores in freeze-dried cryosections, all in the same fiber. We now show the feasibility and instrumentation of new methodology for stimulating a single, intact skeletal muscle fiber at a point resulting in the propagation of an action potential, followed by quick-freezing with sub-millisecond temporal resolution after electrical stimulation, followed by multiple sampling of the frozen muscle fiber for freeze-substitution, freeze-fracture (not shown) and cryosectionmg. This model, at once serving as its own control and obviating consideration of variances between different fibers, frogs etc., is useful to investigate structural and topochemical alterations occurring in the wake of an action potential.


2000 ◽  
Vol 41 (4) ◽  
pp. 481-492
Author(s):  
Naohiko Takahashi ◽  
Morio Ito ◽  
Shuji Ishida ◽  
Takao Fujino ◽  
Mikiko Nakagawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document