LITTERBASE: An Online Portal for Marine Litter and Microplastics and Their Implications for Marine Life

Author(s):  
M. Bergmann ◽  
M.B. Tekman ◽  
L. Gutow
2021 ◽  
Vol 8 ◽  
Author(s):  
Andrés Cózar ◽  
Stefano Aliani ◽  
Oihane C. Basurko ◽  
Manuel Arias ◽  
Atsuhiko Isobe ◽  
...  

Windrow is a long-established term for the aggregations of seafoam, seaweeds, plankton and natural debris that appear on the ocean surface. Here, we define a “litter windrow” as any aggregation of floating litter at the submesoscale domain (<10 km horizontally), regardless of the force inducing the surface convergence, be it wind or other forces such as tides or density-driven currents. The marine litter windrows observed to date usually form stripes from tens up to thousands of meters long, with litter densities often exceeding 10 small items (<2 cm) per m2 or 1 large item (>2 cm) per 10 m2. Litter windrows are generally overlooked in research due to their dispersion, small size and ephemeral nature. However, applied research on windrows offers unique possibilities to advance on the knowledge and management of marine litter pollution. Litter windrows are hot spots of interaction with marine life. In addition, since the formation of dense litter windrows requires especially high loads of floating litter in the environment, their detection from space-borne sensors, aerial surveys or other platforms might be used to flag areas and periods of severe pollution. Monitoring and assessing of management plans, identification of pollution sources, or impact prevention are identified as some of the most promising fields of application for the marine litter windrows. In the present Perspective, we develop a conceptual framework and point out the main obstacles, opportunities and methodological approaches to address the study of litter windrows.


Nature ◽  
2020 ◽  
Vol 578 (7795) ◽  
pp. 482-482
Author(s):  
Josie Glausiusz
Keyword(s):  

SIMBIOSA ◽  
2014 ◽  
Vol 3 (2) ◽  
Author(s):  
Notowinarto Notowinarto ◽  
Ramses Ramses ◽  
Mulhairi Mulhairi

Bulang districts Batam Islands of  Riau province (Riau Islands), its consists of many islands with as well as having the potential diversity of coastal marine life in particular kinds of macro algae or seaweed. Conducted research aimed to determine the structure of macro- algal communities in the intertidal zone islands. The results of the identification of algal species found 16 species are: the Order of Chlorophyceae as 6 spesies; Order Phaeophyceae as 2 spesies; and Order Rhodophyceae as 8 spesies. The community structure at the five stations showed the highest values were found in the island of dominance Cicir (D ' = 0.79) , uniformity index values on Tengah Island (E ' = 0.99) , while the island Balak had the highest diversity index (H ' = 0.88) , with the abundance patterns of population structure on the island is pretty good Central . Results of correlation analysis of regression between IVI types of algae with the conditions of environmental quality suggests that there is a significance (Fhit ˃ F table and the value of r = > 90 %) between IVI algae Halimeda sp and Cryptarachne polyglandulosa at each station with a temperature parameter surface (⁰C) , depth temperature (⁰C) and pH values. Keywords : Algae, Community Structure, Important Value Index.


2012 ◽  
Vol 19 (6) ◽  
pp. 627-634
Author(s):  
Shao Kwang-Tsao
Keyword(s):  

1985 ◽  
Vol 17 (6-7) ◽  
pp. 1187-1198 ◽  
Author(s):  
G. Mance ◽  
A. R. O'Donnell

This paper discusses the derivation of environmental quality standards for coastal waters and the difficulties of using such standards for controlling industrial discharges. Attention is focused on the common List II substances, copper, chromium, lead, nickel, zinc and arsenic - and their effects on marine life. The adequacy of existing toxicity data is discussed and it is concluded that long exposure tests are required to provide information on sublethal effects. Such data are currently limited. It is also important that consideration be given to the effects that reducing salinities and increasing temperatures have in increasing the toxicity of these substances. The complexity of interpreting the results of laboratory toxicity data to coastal waters is discussed with reference to a study of the impact of an industrial discharge.


Sign in / Sign up

Export Citation Format

Share Document