Data Clustering and Self-Organizing Maps in Biology

Author(s):  
Olcay Akman ◽  
Timothy Comar ◽  
Daniel Hrozencik ◽  
Josselyn Gonzales
2017 ◽  
Vol 133 ◽  
pp. 234-254 ◽  
Author(s):  
Diego S. Comas ◽  
Juan I. Pastore ◽  
Agustina Bouchet ◽  
Virginia L. Ballarin ◽  
Gustavo J. Meschino

Algorithms ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 109 ◽  
Author(s):  
Marian B. Gorzałczany ◽  
Filip Rudziński

In this paper, we briefly present several modifications and generalizations of the concept of self-organizing neural networks—usually referred to as self-organizing maps (SOMs)—to illustrate their advantages in applications that range from high-dimensional data visualization to complex data clustering. Starting from conventional SOMs, Growing SOMs (GSOMs), Growing Grid Networks (GGNs), Incremental Grid Growing (IGG) approach, Growing Neural Gas (GNG) method as well as our two original solutions, i.e., Generalized SOMs with 1-Dimensional Neighborhood (GeSOMs with 1DN also referred to as Dynamic SOMs (DSOMs)) and Generalized SOMs with Tree-Like Structures (GeSOMs with T-LSs) are discussed. They are characterized in terms of (i) the modification mechanisms used, (ii) the range of network modifications introduced, (iii) the structure regularity, and (iv) the data-visualization/data-clustering effectiveness. The performance of particular solutions is illustrated and compared by means of selected data sets. We also show that the proposed original solutions, i.e., GeSOMs with 1DN (DSOMs) and GeSOMS with T-LSs outperform alternative approaches in various complex clustering tasks by providing up to 20 % increase in the clustering accuracy. The contribution of this work is threefold. First, algorithm-oriented original computer-implementations of particular SOM’s generalizations are developed. Second, their detailed simulation results are presented and discussed. Third, the advantages of our earlier-mentioned original solutions are demonstrated.


2011 ◽  
Vol 16 (4) ◽  
pp. 488-504 ◽  
Author(s):  
Pavel Stefanovič ◽  
Olga Kurasova

In the article, an additional visualization of self-organizing maps (SOM) has been investigated. The main objective of self-organizing maps is data clustering and their graphical presentation. Opportunities of SOM visualization in four systems (NeNet, SOM-Toolbox, Databionic ESOM and Viscovery SOMine) have been investigated. Each system has its additional tools for visualizing SOM. A comparative analysis has been made for two data sets: Fisher’s iris data set and the economic indices of the European Union countries. A new SOM system is also introduced and researched. The system has a specific visualization tool. It is missing in other SOM systems. It helps to see the proportion of neurons, corresponding to the data items, belonging to the different classes, and fallen in the same SOM cell.


Sign in / Sign up

Export Citation Format

Share Document