Low-cost materials in gas-phase adsorption

Author(s):  
Ramonna I. Kosheleva ◽  
George Z. Kyzas ◽  
Athanasios C. Mitropoulos
1991 ◽  
Vol 24 (7) ◽  
pp. 277-284 ◽  
Author(s):  
E. Gomólka ◽  
B. Gomólka

Whenever possible, neutralization of alkaline wastewater should involve low-cost acid. It is conventional to make use of carbonic acid produced via the reaction of carbon dioxide (contained in flue gases) with water according to the following equation: Carbon dioxide content in the flue gas stream varies from 10% to 15%. The flue gas stream may either be passed to the wastewater contained in the recarbonizers, or. enter the scrubbers (which are continually sprayed with wastewater) from the bottom in oountercurrent. The reactors, in which recarbonation occurs, have the ability to expand the contact surface between gaseous and liquid phase. This can be achieved by gas phase dispersion in the liquid phase (bubbling), by liquid phase dispersion in the gas phase (spraying), or by bubbling and spraying, and mixing. These concurrent operations are carried out during motion of the disk aerator (which is a patent claim). The authors describe the functioning of the disk aerator, the composition of the wastewater produced during wet gasification of carbide, the chemistry of recarbonation and decarbonation, and the concept of applying the disk aerator so as to make the wastewater fit for reuse (after suitable neutralization) as feeding water in acetylene generators.


Author(s):  
Grégoire David ◽  
Laurent Heux ◽  
Stéphanie Pradeau ◽  
Nathalie Gontard ◽  
Hélène Angellier-Coussy

Abstract This paper aims at investigating the potential of vine shoots (ViSh) upcycling as fillers in novel poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) based biocomposites. ViSh particles of around 50 µm (apparent median diameter) were obtained combining dry grinding processes, and mixed with PHBV using melt extrusion. Thermal stability and elongation at break of biocomposites were reduced with increasing contents of ViSh particles (10, 20 and 30 wt%), while Young’s modulus and water vapor permeability were increased. It was shown that a surface gas-phase esterification allowed to significantly increase the hydrophobicity of ViSh particles (increase of water contact angles from 59° to 114°), leading to a reduction of 27% in the water vapor permeability of the biocomposite filled with 30 wt% of ViSh. The overall mechanical performance was not impacted by gas-phase esterification, demonstrating that the interfacial adhesion between the virgin ViSh particles and the PHBV matrix was already good and that such filler surface treatment was not required in that case. It was concluded that ViSh particles can be interestingly used as low cost fillers in PHBV-based biocomposites to decrease the overall cost of materials.


1987 ◽  
Vol 229 (1-2) ◽  
pp. 87-98 ◽  
Author(s):  
K. Bange ◽  
B. Straehler ◽  
J.K. Sass ◽  
Roger Parsons

2008 ◽  
Vol 344 (1-2) ◽  
pp. 183-190 ◽  
Author(s):  
R.I. Slioor ◽  
J.M. Kanervo ◽  
T.J. Keskitalo ◽  
A.O.I. Krause

AIChE Journal ◽  
2017 ◽  
Vol 63 (11) ◽  
pp. 5029-5043 ◽  
Author(s):  
Austin P. Ladshaw ◽  
Sotira Yiacoumi ◽  
Ronghong Lin ◽  
Yue Nan ◽  
Lawrence L. Tavlarides ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document