The Carbon Cycle of Terrestrial Ecosystems

2020 ◽  
pp. 141-182
Author(s):  
William H. Schlesinger ◽  
Emily S. Bernhardt
2008 ◽  
Vol 22 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ning Zeng ◽  
Jin-Ho Yoon ◽  
Augustin Vintzileos ◽  
G. James Collatz ◽  
Eugenia Kalnay ◽  
...  

2008 ◽  
Vol 21 (15) ◽  
pp. 3776-3796 ◽  
Author(s):  
Andrei P. Sokolov ◽  
David W. Kicklighter ◽  
Jerry M. Melillo ◽  
Benjamin S. Felzer ◽  
C. Adam Schlosser ◽  
...  

Abstract The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical simulations were carried out with two versions of the IGSM’s Terrestrial Ecosystems Model, one with and one without carbon–nitrogen dynamics. Simulations show that consideration of carbon–nitrogen interactions not only limits the effect of CO2 fertilization but also changes the sign of the feedback between the climate and terrestrial carbon cycle. In the absence of carbon–nitrogen interactions, surface warming significantly reduces carbon sequestration in both vegetation and soil by increasing respiration and decomposition (a positive feedback). If plant carbon uptake, however, is assumed to be nitrogen limited, an increase in decomposition leads to an increase in nitrogen availability stimulating plant growth. The resulting increase in carbon uptake by vegetation exceeds carbon loss from the soil, leading to enhanced carbon sequestration (a negative feedback). Under very strong surface warming, however, terrestrial ecosystems become a carbon source whether or not carbon–nitrogen interactions are considered. Overall, for small or moderate increases in surface temperatures, consideration of carbon–nitrogen interactions result in a larger increase in atmospheric CO2 concentration in the simulations with prescribed carbon emissions. This suggests that models that ignore terrestrial carbon–nitrogen dynamics will underestimate reductions in carbon emissions required to achieve atmospheric CO2 stabilization at a given level. At the same time, compensation between climate-related changes in the terrestrial and oceanic carbon uptakes significantly reduces uncertainty in projected CO2 concentration.


2014 ◽  
Vol 112 (2) ◽  
pp. 436-441 ◽  
Author(s):  
David Schimel ◽  
Britton B. Stephens ◽  
Joshua B. Fisher

Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation.


1993 ◽  
Vol 23 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Tatyana P. Kolchugina ◽  
Ted S. Vinson

Natural processes in ocean and terrestrial ecosystems together with human activities have caused a measurable increase in the atmospheric concentration of CO2. It is predicted that an increase in the concentration of CO2 will cause the Earth's temperatures to rise and will accelerate rates of plant respiration and the decay of organic matter, disrupting the equilibrium of the terrestrial carbon cycle. Forests are an important component of the biosphere, and sequestration of carbon in boreal forests may represent one of the few realistic alternatives to ameliorate changes in atmospheric chemistry. The former Soviet Union has the greatest expanse of boreal forests in the world; however, the role of Soviet forests in the terrestrial carbon cycle is not fully understood because the carbon budget of the Soviet forest sector has not been established. In recognition of the need to determine the role of Soviet forests in the global carbon cycle, the carbon budget of forest biomes in the former Soviet Union was assessed based on an equilibrium analysis of carbon cycle pools and fluxes. Net primary productivity was used to identify the rate of carbon turnover in the forest biomes. Net primary productivity was estimated at 4360 Mt of carbon, the vegetation carbon pool was estimated at 110 255 Mt, the litter carbon pool was estimated at 17 525 Mt, and the soil carbon pool was estimated at 319 100 Mt. Net primary productivity of Soviet forest biomes exceeded industrial CO2 emissions in the former Soviet Union by a factor of four and represented approximately 7% of the global terrestrial carbon turnover. Carbon stores in the phytomass and soils of forest biomes of the former Soviet Union represented 16% of the carbon concentrated in the biomass and soils of the world's terrestrial ecosystems. All carbon pools of Soviet forest biomes represented approximately one-seventh of the world's terrestrial carbon pool.


2020 ◽  
Author(s):  
Jiawen Zhu ◽  
Minghua Zhang ◽  
Yao Zhang ◽  
Xiaodong Zeng ◽  
Xiangming Xiao

<p>The Gross Primary Production (GPP) in tropical terrestrial ecosystems plays a critical role in the global carbon cycle and climate change. The strong 2015–2016 El Niño event offers a unique opportunity to investigate how GPP in the tropical terrestrial ecosystems responds to climatic forcing. This study uses two GPP products and concurrent climate data to investigate the GPP anomalies and their underlying causes. We find that both GPP products show an enhanced GPP in 2015 for the tropical terrestrial ecosystem as a whole relative to the multi-year mean of 2001–2015, and this enhancement is the net result of GPP increase in tropical forests and decrease in non-forests. We show that the increased GPP in tropical forests during the El Nino event is consistent with increased photosynthesis active radiation as a result of a reduction in clouds, while the decreased GPP in non-forests is consistent with increased water stress as a result of a reduction of precipitation and an increase of temperature. These results reveal the strong coupling of ecosystem and climate that is different in forest and non-forest ecosystems, and provide a test case for carbon cycle parameterization and carbon-climate feedback simulation in models.</p>


1994 ◽  
Vol 74 (3-4) ◽  
pp. 183-204 ◽  
Author(s):  
Naohiro Goto ◽  
Akiyoshi Sakoda ◽  
Motoyuki Suzuki

Sign in / Sign up

Export Citation Format

Share Document